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§ Lecture 1

The following is the course plan:

• Categories and functors

• Groups and categories

• Tensor products

• Galois theory of etale algebra over a field

• Semisimple algebras and Galois cohomology

There will be 5 exams, each 1 hour long, on

• September 14 (Basic category theory and group theory)

• October 5

• October 26

• November 9

• November 30

Definition 1.1. A category C consists of the following data:

(1) A collection (possibly a proper class) of objects Ob(C).

(2) For each pair x, y ∈ Ob(C) a set of morphisms MorC(x, y).

(3) For each triple x, y, z ∈ Ob(C) a composition map MorC(y, z) × MorC(x, y) → MorC(x, z),
denoted (ϕ, ψ) 7→ ϕ ◦ ψ.

These data are to satisfy the following rules:

(1) For every element x ∈ Ob(C) there exists a morphism idx ∈ MorC(x, x) such that idx ◦ϕ = ϕ
and ψ ◦ idx = ψ whenever the compositions make sense.

(2) Composition is associative, i.e., (ϕ ◦ ψ) ◦ χ = ϕ ◦ (ψ ◦ χ) whenever these compositions make
sense.

Example 1.1.1. Let Set be the category of all sets. Then Ob Set is the class of all sets, MorSet is
the class of functions between sets, and so on.

Definition 1.2. Let C be a category, and let f ∈ HomC(C,D). We say that f is an isomorphism iff
there exists g ∈ HomC(D,C) such that f ◦ g = idD and g ◦ f = idC .

Definition 1.3. Let C be a category andX be an object. We define its automorphism group AutC(X)
to be the isomorphisms in HomC(X,X). This is really a group under morphism composition, as
can be easily checked.

Definition 1.4. We say that X is an initial object of C if there is exactly one morphism from X to
Y for any object Y in C. We say that X is a final object if there is exactly one morphism from Y
to X for all Y .
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Lemma 1.1. Initial/final objects, if they exist, are unique up to unique isomorphism.

Proof. Let X and X ′ be two initial objects. Then there is a unique morphism from X to X ′, say
f , and similarly a unique morphism f ′ from X ′ to X. They are inverse of each other because f ◦ f ′
is an element of HomC(X,X), which is a singleton whose only element is the identity. Therefore,
f ◦ f ′ = idX′ and f ′ ◦ f = idX .

Example 1.4.1. In Set, the initial object is the empty set and the final object is any singleton. In
Grp, both the initial and final objects are the trivial group. In Ring, the initial object is Z and the
final object is the trivial ring.

Here is another example of a category.

Example 1.4.2. Let A and B be two sets. We can form a category C as follows. The objects of
this category are triples (P, f, g) where P is a set and f and g are functions from P to A and
B respectively. The morphism set between two triples (P, f, g) and (P ′, f ′, g′) is the set of maps
ϕ : P → P ′ such that f ′ ◦ ϕ = f and g′ ◦ ϕ = g.

Lemma 1.2. This category has an final object, which is the cartesian product (A × B, f, g) where
f and g are respective projections.

Proof. Given any object (P, f ′, g′), there is exactly one morphism from P to A × B, defined by
ϕ(x) = (f ′(x), g′(x)) for all x ∈ P .

The point is that we can do this construction for any category C. We can no longer guarantee
that such a final object exists anymore, but when it does, we can define

Definition 1.5. If such an object exists, then we say that it is the product of A and B.

Example 1.5.1. In the category of topological spaces, the product of two objects A and B exists.
The underlying set is just the cartesian product A×B, and the topology is the product topology.

Definition 1.6. Let C be a category. We define a new category Cop which is called the opposite
category of C simply by reversing all the arrows. To be more exact, the objects of Cop are the same
as that of C. The hom set HomCop(X,Y ) is the same as HomC(Y,X). The composition is defined
by reversing everything: f ◦op g := g ◦ f .

This exhibits a duality, in that a final object of C corresponds to an initial object of Cop.

Definition 1.7. Let Q be the product of A and B in the opposite category. Then we call Q the
coproduct of A and B in C.

Example 1.7.1. The coproduct of A and B in Set is the disjoint union of A and B. The coproduct
of two abelian groups A and B is the usual direct product of A and B. The coproduct of topological
spaces is their disjoint union.

Example 1.7.2. In Grp, the coproduct exists, but it is non-trivial compared to other examples.
Given two groups A and B, the coproduct is the free product of A and B, denoted as A ∗B.

Question. Show that Z/2Z ∗ Z/3Z = SL2(Z)/{±1}.

Proof. See here. The main idea is Euclidean Algorithm. Looking at the action of a matrix on other
matrices is also very useful.

For some references on category theory, Professor Yu recommended Lang’s Algebra, and Mac
Lane’s Categories for the working mathematician.
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§ Lecture 2

Definition 2.1. Let C and C′ be two categories. A functor F from C to C′ is a map which sends
each object X ∈ C to an object F(X) ∈ C′, and each morphism f ∈ HomC(X,Y ) to a morphism
F(f) ∈ HomC′(F(X),F(Y )). Moreover, it is compatible with composition and identity morphisms.

Example 2.1.1. As a mundane example, we can define a functor from Grp to Set by forgetting the
group structure.

Example 2.1.2. Similarly, we can define a functor F from Ring to Grp by simply forgetting the
multiplicative structure of the ring and only looking at the underlying abelian group with addition.
We can also define another functor by mapping each ring to its multiplicative group.

Example 2.1.3. Let’s try to define a ‘functor’ C from Top to Ring. For each topological space X,
we can define C(X) to be the space of continuous real-valued functions, which can be given a
natural ring structure by adding and multiplying them pointwise. Now let’s say f : X → Y is a
continuous map between topological spaces. Then we can define a map C(f) from C(Y ) → C(X)
by simply composing with f on the right. However, note that everything is actually reversed; even
the composition law is C(f) ◦ C(g) = C(g ◦ f). We say that C is a contravariant functor from Top
to Ring. More precisely, it is a functor from Topop to Ring.

Example 2.1.4. Let M be the category of pointed manifolds, i.e., its objects are pairs (X,x) such
that X is a differentiable manifold and x ∈ X. The morphisms between (X,x) and (Y, y) are
differentiable maps from X to Y such that x is mapped to y. We can define a functor C from M
to Vect(R) by mapping each (X,x) to the tangent space at X. Note that each differentiable map
f : X → Y defines a map between the respective tangent spaces via the differential. By chain rule,
this is a functor.

Example 2.1.5. Let C be a category whose objects are (G,N) where G is a group and N is a
normal subgroup of G. The morphisms between (G,N) and (G′, N ′) are the homomorphisms from
G to G′ taking N inside N ′. We can now define a functor Q from C to Grp by the quotient map.
This is well-defined because of the universal property of quotients; the kernel of the quotient map
G′ → G′/N ′ is N ′, so composition with f : G→ G′ results in a map whose kernel contains N . This
induces a unique map from G/N to G′/N ′ via the universal property.

Example 2.1.6. We can define a functor from Ring to Ring by mapping R to R[x]. We can also
define another functor by mapping R to Mn(R).

Now let’s move on to natural transformations.

Definition 2.2. A natural transformation α from F to F ′ consists of a collection of morphisms
αX : F(X) → F ′(X) for each object X, such that if f is a morphism from X to Y , αY ◦ F(f) =
F ′(f) ◦ αX .

Let Fun(C, C′) be all functors from C → C′. We can make this into a category in the following
way. The objects of this category are the functors C → C′. If F and F ′ are in Fun(C, C′), we
define Mor(F ,F ′) to be the set of natural transformations from F to F ′. Composition of natural
transformations is defined pointwise.

Example 2.2.1. Let’s take the category from Example 2.1.5. We can define another functor F by
forgetting the group N , i.e., mapping (G,N) to G. Then we can define a natural transformation α
by letting α(G,N) to be the quotient map from G to G/N .
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Example 2.2.2. We can define a functor GLn from CommRing to Grp by mapping R to GLn(R).
We can also define a functor GL1 by mapping R to R×. Then there exists a natural transformation
between two functors, which is just the determinant map det.

Example 2.2.3. The functor d which maps a vector space V to its dual V ∨ is a contravariant functor.
We can compose it with itself to have a functor d◦d. Then there is a natural transformation between
the identity function id and d ◦ d. Of course, this is just the canonical isomorphism (in the case
of finite-dimensional vector spaces) that we get by feeding v ∈ V to elements of V ∨ to make an
element of the double dual (V ∨)∨.

Definition 2.3 (Yoneda embedding). Let C be any category. Let Fun(C, Setop) be the category of
contravariant functors from C to Set. Then we can define a functor h from the original category C
to Fun(C, Setop). For each object X ∈ C, we map it to a functor hX which is defined as follows:
for each object Y in C, hX(Y ) is defined to be the set HomC(Y,X). For each map f : Y1 → Y2, we
define hX(f) : Hom(Y2, X) → (Y1, X) by composing maps in Hom(Y2, X) with f on the right.
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§ Lecture 3

Let’s continue with the Yoneda embedding. We have associated with each object X of C a con-
travariant functor hX from C to Set. Now we do the same thing for morphism between objects of
C. Suppose that we have a map f : X → Y . Then we associate with it a natural transformation
hf : hX → hY which is defined as follows: for any object Z ∈ C, we define the component of hf ,
denoted as hf,Z by mapping hX(Z) = Hom(Z,X) to hY (Z) = Hom(Z, Y ) by composing with f
on the left. It is easy to check that this is indeed a natural transformation. Now all that’s left to
check is that this association is indeed a functor. This is not too hard, so I’ll just leave this to my
future self.

We can now state a very important result in category theory.

Lemma 3.1 (Yoneda). h is fully faithful, i.e., the map

HomC(X,X
′) → HomFun(C,Setop)(hX , hX′)

is a bijection.

Proof. Let’s first show that this map is injective. Assume that f1 and f2 are morphisms to X to
X ′, and suppose that the associated natural transformations hf1 and hf2 are the same. We wish to
show that f1 = f2. Remember that for any object Y and ϕ : Y → X, hf1(ϕ) = f1 ◦ ϕ. Therefore,
if we take Y to be X and ϕ to be idX , then f1 = hf1(ϕ) = hf2(ϕ) = f2.

The heart of the lemma is that this map is also surjective. Suppose that we have a natural
transformation α from hX → hX′ . We have to show that there exists a morphism f : X → X ′

such that α = hf . Of course, if it exists, then it would be equal to αX(idX), so we let f to be this
element. We want to show that α = hf .

Let Y be any object of C, and let g be an element of hX(Y ) = Hom(Y,X). We want to check
that αY (g) = αX(idX) ◦ g. This follows from the naturality of α, since

αY (g) = αY (hX(g)(idX)) = hX′(g)(αX(idX)) = αX(idX) ◦ g.

Now we want to discuss the equivalence of categories. Suppose that C and D are categories,
and let F and G be functors from C to D and vice versa. The naive way to say that C and D are
isomorphic would be if F and G induce bijections between objects and morphisms. This turns out
to be a bit too restrictive. Instead, we make the following definition.

Definition 3.1. Suppose that F ◦G and idD are isomorphic as elements of Fun(D,D), and similarly
for G ◦ F and idC . Then we say that C and D are equivalent categories and that F and G are
equivalence functors.

Here are some examples.

Example 3.1.1. Let fVectR denote the category of finite dimensional vector spaces over R. Let C
be the full subcategory (hom sets are just the ones from the original category.) consisting of the
objects Rn where n ≥ 0. Let i be the obvious functor C → fVectR. Then i is an equivalence functor.

To show this, we need to find a functor G in the other direction. For each object V ∈ fVectR, we
can choose an isomorphism ϕV : V → RdimV . Now we define the functor G by G(V ) = RdimV For
any morphism f ∈ Hom(V,W ), we define G(f) to be ϕW ◦ f ◦ ϕ−1

V . This definition is intentionally
made so that G satisfies the properties of a functor.

Now let’s check that i is indeed an equivalence functor. Note that (G ◦ i)(Rn) is just Rn.
Therefore,

(G ◦ i)(f) = G(f) = ϕRm ◦ f ◦ ϕ−1
Rn .
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It is easy to see that the natural transformation α given by αRn = ϕRn is indeed a natural trans-
formation from G ◦ i→ idC . The other direction can be checked similarly.

Here is another characterization of equivalence.

Theorem 3.2. A functor F : C → D is an equivalence functor if and only if F is fully faithful and
essentially surjective. (The latter means that for any object Y in D, there exists an object in C such
that F(X) is isomorphic to Y .)
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§ Lecture 4

We will discuss about tensor products in this lecture. LetM be an abelian group. Then Hom(M,M)
has a ring structure with pointwise addition and composition as multiplication.

Definition 4.1. Let A be a ring. Then a left A-module is (M,α), where M is an abelian group, and
α : A→ Hom(M,M) is a ring homomorphism.

Usually, we surpress α, and write α(a)(m) as am. We can think of this as an analog of group
action, but here the underlying object is an abelian group instead of a set.

Given a ring A, we can consider its opposite ring. Then a right A-module is just a left Aop-
module.

Remark. There’s one fundamental difference between group actions and modules. For every group
G, G ∼= Gop naturally, so we can always convert a left G-action into a right G-action. However, in
the case of rings, A ̸∼= Aop in general. Therefore, there is no obvious way to turn a left A-module
into a right A-module. Some important examples of the nice case when A ∼= Aop are

• A is a commutative ring

• A = k[G] is a group algebra where k is commutative

• A =Mn(k) where k is a commutative ring.

[Slight digression]

Question. What are all the isomorphisms between Mn(k) and Mn(k)
op? Are there any other

isomorphism except for transpose?

To answer this question, we recall a useful fact: if C is a category with objects X and X ′,
and if there exists an isomorphism from X to X ′ in C, then the set of isomorphisms is a principal
homogeneous space of Aut(X ′). In other words, once there exists a single isomorphism, the others
are just composition of that isomorphism with automorphisms of X ′.

Theorem 4.1. If k is a field,

Aut(Mn(k)) = {conj(g) : g ∈ GLn(k)}

where conj(g) is conjugation by g.

Corollary 4.1.1. g ∈ GLn(k) 7→ (gt)−1 is an automorphism of GLn(k) (or SLn(k)). In fact,
Autk(SLn(k))/ Inn(SLn(k)) is a group of order 2.

[Digression ends]
Let A be a ring, let MA be a right A-module, and AN be a left A-module.

Definition 4.2. Let L be an abelian group. A map ϕ :M ×N → L is called A-bilinear if ϕ(m,−) :
N → L is an abelian group homomorphism for all m ∈M , and similarly for ϕ(−, n), and moreover,
ϕ(ma, n) = ϕ(m, an).

Let BiHom(M ×N,L) be the set of A-bilinear maps ϕ : M ×N → L. We can now define the
tensor product of right and left A-modules as follows using a universal property.

Fix M and N . We form a category C, where the objects of C are tuples (ϕ,L) where L is
an abelian group and ϕ is A-bilinear. The morphisms between (ϕ,L) and (ϕ′, L′) are just abelian
group homomorphisms α : L→ L′ which satisfies α ◦ ϕ = ϕ′.
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Definition 4.3. This category C has an initial object. If (ϕ0, L0) is an initial element of C, then we
denote L0 as M ⊗A N , and ϕ0(m,n) as m⊗ n. We say that L0 is the tensor product of M and N
over A.

Of course, we still have to show that C indeed has an initial object. This is a classic construction.

Proof. Let T be the free abelian group M × N . By definition, T has a basis {em,n}(m,n)∈M×N .
Now consider the subgroup of T generated by elements of the form

em,n+n′ − em,n − em,n′ , em+m′,n − em,n − em′,n, and ema,n − em,an,

and denote it by R. Now we define L0 to be T/R, and the map ϕ0 : M × N → L0 by ϕ(m,n) =
em,n +R. It is obvious that ϕ0 is A-bilinear.

Now suppose that L is an abelian group, and ϕ is an A-bilinear map from M ×N → L. If there
is a homomorphism f : L0 → L such that f ◦ ϕ0 = ϕ, then f(em,n + R) = (m,n) for all (m,n).
Since em,n span T , such an f must be unique. We now show the existence. Viewing ϕ as a map of
sets, ϕ induces a unique abelian group homomorphism ϕ′ from the free group T to L. The kernel of
this group homomorphism contains R, so by the universal property of quotients, this again induces
a unique group homomorphism ϕ′′ from L0 = T/R to L.

Remark. ⊗ is a functor from ModA × AMod → Ab. In particular, if we have α : M → N and
β : M ′ → N ′, then we have a map (α, β) : M ×M ′ → N ×N ′, and by the functorial property, we
must have a map α⊗ β :M ⊗M ′ → N ⊗N ′, which takes m⊗ n to α(m)⊗ β(n).
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§ Lecture 5

We can say that M ⊗AN co-represents the functor Ab → Set which maps L to the set of A-bilinear
maps from M ×N → L.

Definition 5.1. A functor F : C → Setop is called representable if F ∼= hX for some hX in the image
of Yoneda embedding.

Now consider a variant of the embedding Cop → Fun(Cop, Setop). The right side is just
Fun(C, Set), so we have a contravariant functor from C to Fun(C,Set).

Definition 5.2. A functor is called co-representable if it is in the image of this opposite Yoneda
embedding.

Note that until now, there is no natural way to define a module structure on M ⊗AN . We can
change that by imposing extra conditions on M and N .

Definition 5.3. Let A, B be rings. An (A,B)-bimodule is a left (A×Bop)-module.

Usually, for an (A,B)-bimodule, we regard M as both a left A-module and a right B-module
such that the two actions commute, i.e., (am)b = a(mb). We denote this structure by AMB.

Lemma 5.1. Let M be an (A,B)-bimodule, and let N be a (B,C)-bimodule. Then the abelian group
M ⊗B N can be given a natural (A,C)-bimodule structure.

Proof. SinceM is an (A,B)-bimodule, left multiplication by an element of A gives a right B-module
endomorphism of M . Similarly, since N is a (B,C)-bimodule, right multiplication by an element
of A gives a left B-module endomorphism of N . If we have a right B-module endomorphism ϕ of
M , and a left B-module endomorphism τ of N , then it can be checked that the map

M ×N →M ⊗N

(m,n) 7→ ϕ(m)⊗ τ(n)

is B-bilinear, hence induces an abelian group endomorphism of M ⊗B N which maps m ⊗ n →
ϕ(m)⊗ τ(n). In particular, by the previous observation, it follows that an element of A×Cop, say
(a, c), gives an abelian group endomorphism of M ⊗BN , by mapping m⊗n→ am⊗nc. Note that

((a, c) · (a′, c′))(m⊗ n) = (a, c)(a′m⊗ nc′) = aa′m⊗ nc′c = (aa′, c ·op c′)(m⊗ n)

which shows that this map is a ring homomorphism to EndAb(M ⊗B N). This completes the
proof.

As a generalization, we can check that BMA⊗ANC corepresents the functor from the category of
(B,C)-bimodules to Set, which maps each object L to the set of A-bilinear maps from BMA×ANC

to L which are also (B,C)-linear.

Remark. If we’re working in the category of left A-modules, then Hom(AM,AN) is an abelian
group. Also, Hom(AMB,ANC) is a right (B × C)-module.

We now want to define the tensor product of algebras.

Definition 5.4. Let A be a commutative ring. An A-algebra is a pair (α,R) such that α : A → R
is a ring homomorphism, with α(A) lying in the center of R. In other words, α(a)r = rα(a) for all
a ∈ A and r ∈ R. We write ar to denote α(a)r.
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In particular, the multiplication defined above gives the ring R an (A,A)-bimodule structure.
Note that the condition that α(A) lies in the center of R implies that the multiplication map
R×R→ R is A-bilinear.

Theorem 5.2. If B and C are A-algebras, then B ⊗A C has a canonical A-algebra structure.

We list some preliminary facts.

1. M ⊗ N ∼= N ⊗ M and this isomorphism maps m ⊗ n to n ⊗ m. (Note that we require
commutativity of A here as otherwise one of the tensor products above will be undefined!)

2. M ⊗ (N ⊗ L) ∼= (M ⊗N)⊗ L, and this isomorphism maps m⊗ (n⊗ ℓ) to (m⊗ n)⊗ ℓ.

Proof. Of course, we already have an (A,A)-bimodule structure on B ⊗A C. Therefore, we just
need to define a multiplication, which is an A-bilinear map from (B ⊗ C) × (B ⊗ C) → B ⊗ C.
This is the same as constructing an abelian group homomorphism (B ⊗ C) ⊗ (B ⊗ C) → B ⊗ C.
By the two facts above, the left side is isomorphic to (B ⊗ B) ⊗ (C ⊗ C). Now the rest is easy.
We have an A-linear map B ⊗ B → B by multiplication, and similarly, we have an A-linear map
C ⊗ C → C by mutliplication. Therefore, by the functorial property, we can construct an abelian
group homomorphism (B ⊗ B) ⊗ (C ⊗ C) → B ⊗ C which maps (b ⊗ b′) ⊗ (c ⊗ c′) to bb′ ⊗ cc′.
Reversing our steps, this gives us a bilinear map from (B ⊗ C) × (B ⊗ C) → B ⊗ C which maps
(b⊗ c, b′ ⊗ c′) to bb′ ⊗ cc′. This is exactly the multiplication map that we desire. It is easy to check
that this map satisfies all properties of multiplication that we need (associativity, distributivity,
etc.)

Similarly to the tensor product of modules, we can also characterize the tensor product of
algebras via a universal property.

Definition 5.5. Fix A-algebras B and C. Form a category C whose objects are diagrams consisting
of a map β : B → R and another map γ : C → R, and β(b) commutes with γ(c) for all b ∈ B
and c ∈ C. For any two diagrams, the set of morphisms between them is just the set of morphisms
from R→ R′ that makes the diagram commute.

Theorem 5.3. This category has an initial object, which is the tensor product of B and C.

In particular, the tensor product of B and C is the coproduct in the category of commuta-
tive A-algebras. This is because the extra commutativity condition in the construction above is
automatically satisifed for commutative A-algebras.

We are quite far from the ground now, so let’s try to look at some specific examples and basic
facts.

Fact 5.1. M ⊗A N is generated by the subset {m ⊗ n : m ∈ M,n ∈ N}. These are called simple
tensors.

Fact 5.2. If I ⊂ A is a two-sided ideal, then A/I is a right A-module and we can tensor it with M .
This turns out to be isomorphic to M/IM where IM = {

∑
isms : is ∈ I,ms ∈M}.

Proof. We have a map from (A/I)×M →M/IM defined by (a+ I,m) → am+ IM . This map is
A-bilinear, so it gives a map α : (A/I)⊗AM →M/IM . Now define a map from M → (A/I)⊗AM
defined by m → (1 + I) ⊗ m. The kernel of this map contains IM , so this gives a map from
β :M/IM → (A/I)⊗AM which maps m+ IM → (1+ I)⊗m. It is now easy to check that α and
β are inverses of each other.
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Lemma 5.4. Tensor product also distributes over direct sum.(⊕
i∈I

Mi

)
⊗A N ∼=

⊕
i∈I

(Mi ⊗A N).
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§ Lecture 6

A corollary of the preceeding lemma is that if M is a free right A-module with basis {ei}i∈I , then
M ⊗A N ∼=

⊕
i∈I N . In particular,

Lemma 6.1. If both M and N are free A-modules, where A is commutative, then M ⊗A N is also
a free A-module. If M has basis {ei} and N has basis {fj}, then M ⊗A N has basis {ei ⊗ fj}.

Suppose that A is commutative, and that B and C are A-algebras. Assume that C is free as
an A-module with basis {ei}i∈I . Then

B ⊗A C =
⊕
i∈I

B ⊗A (Aei)

as A-modules. We want to investigate its ring structure as well. By definition, (b⊗ei)(b′⊗ej) = bb′⊗
(eiej). We can then write eiej as a linear combination of the basis ei which gives the corresponding
image in the direct sum on the right hand side.

Example 6.0.1. Let C = A[x] be a polynomial ring where A is commutative, and let {ei} =
{1, x, x2, . . .}. Then

B ⊗A C =
∞⊕
i=0

B ⊗A (Axi).

From this, it can be seen that B ⊗A C is just B[x]. As a generalization, if f is a monic polynomial
of degree n and C = A[x]/(f), then C is a free A-module of degree n. Then

B ⊗A
A[x]

fA[x]
∼=

B[x]

fB[x]
.

Example 6.0.2. B⊗AMn(A) ∼=Mn(B). This is becauseMn(A) is the free A-module with generators
{eij}1≤i,j≤n satisfying eijekl = δjkeil. Therefore, B ⊗A Mn(A) is a free B-module with generators
that satisfy the same relation. Therefore, it must be isomorphic to Mn(B). In general, Mn(A)⊗A

Mm(A) =Mnm(A).

Let A be an arbitrary ring, and let M , N be left A-modules. Then we can define

M∨ := Hom(M,A),

and since A is an (A,A)-bimodule, the above has a right A-module structure. Then there is a
natural bilinear map

Φ :M∨ ×N → Hom(M,N), (ϕ, n) 7→ (m 7→ ϕ(m)n).

which gives an abelian group homomorphism from M∨ ⊗A N → Hom(M,N). In fact, this gives a
natural transformation between the two functors from AMod×AMod to Ab the first of which maps
(M,N) 7→M∨ ⊗A N and the second which maps (M,N) 7→ Hom(M,N).

The map αM,N is an isomorphism whenM is free of finite rank. Since the two functors commute
with direct sums, we just need to prove this proposition for the case when the rank is 1. This can
be checked easily.

In particular, if M is free of finite rank over A, then

EndA(M) ∼=M∨ ⊗A M.
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However, observe that the left hand side is a ring. This means that we can impose a natural ring
structure on M∨ ⊗A M corresponding to this. For simplicity, assume that A is commutative. Let
ϕ⊗m and τ ⊗ n be two elements of M∨ ⊗A M . Then

(ϕ⊗m)(x) = ϕ(x)m and (τ ⊗ n)(x) = τ(x)n

when viewed as elements of EndA(M). Since the product operation in the latter is composition,
the product of the above two maps is

x 7→ ϕ(τ(x)n)m = τ(x)ϕ(n)m.

The element of M∨ ⊗A M corresponding to this is τ ⊗ ϕ(n)m.
If A is a commutative ring and M and N are free A-modules, then EndA(M) and EndA(N) are

A-algebras. By the above, there exists an abelian group homomorphism

EndA(M)⊗A EndA(N) ∼=M∨ ⊗M ⊗N∨ ⊗N ∼= (M ⊗N)∨ ⊗ (M ⊗N) ∼= EndA(M ⊗N).

Fact 6.1. The above is in fact an isomorphism of A-algebras.

Proof. Denote the map by Φ. We need to check two things: first that ϕ is a ring homomorphism,
and that ϕ is an A-module homomorphism. The latter is not too hard, so we will only prove the
first one. Let f ∈ EndA(M) correspond to elementary tensor ϕ⊗m, and g ∈ EndA(N) correspond
to τ ⊗ n. Then the image of f ⊗ g under Φ is

f ⊗ g 7→ ϕ⊗m⊗ τ ⊗ n 7→ (ϕ⊗ τ)⊗m⊗ n,

and so
Φ(f ⊗ g)(x⊗ y) = ϕ(x)τ(y)(m⊗ n).

Since ff ′ corresponds to ϕ′ ⊗ ϕ(m′)m, and gg′ corresponds to τ ′ ⊗ τ(n′)n, we have

Φ(ff ′ ⊗ gg′)(x⊗ y) = ϕ′(x)τ ′(y)(ϕ(m′)m⊗ τ(n′)n) = ϕ′(x)ϕ(m′)τ ′(y)τ(n′)(m⊗ n),

and

(Φ(f ⊗ g) · Φ(f ′ ⊗ g′))(x⊗ y) = Φ(f ⊗ g)(ϕ′(x)τ ′(y)(m′ ⊗ n′)) = ϕ′(x)τ ′(y)ϕ(m′)τ(n′)(m⊗ n)

which shows that Φ is multiplicative for preimages of elementary tensors. Since EndA(M) ⊗
EndA(N) is generated by such tensors and Φ is linear, it follows that Φ is multiplicative for all
elements. It is now easy to check that Φ is a ring homomorphism.
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§ Lecture 7

[All the modules in this lecture are left modules unless specified otherwise.]
Let ϕ : A → B be a ring homomorphism. Then any B-module N can be regarded as an A-

module. Denote this A-module by ϕ∗N . Then ϕ∗ is a functor from the category of B-modules to
the category of A-modules. We now want to do the reverse: given any A-module M , we want to
give a nice B-module structure to M .

For any A-module M , we can consider the tensor product B ⊗AM which also has a B-module
structure as well. In this way, we get another functor ϕ∗ which takes A-modules to B-modules.
This construction is called base change.

Fact 7.1. ϕ∗ is left adjoint to ϕ∗.

Proof. Suppose that we have a map f : M → N , where M is an A-module and N is a B-module.
Then we can define a map from B×M → N by mapping (b,m) → bf(m). Then this is A-bilinear,
so this induces a map α(f) : B ⊗A M 7→ N . For the other direction, if g : B ⊗A M → N , then we
can define β(g) :M → N by mapping m 7→ g(1⊗m). This gives two maps:

α : HomA−Mod(M,ϕ∗N) → HomB−Mod(ϕ∗M,N),

and β in the opposite direction. It can be checked that α and β are inverses to each other.

Now let’s assume that A and B are commutative rings. We can do the exact same construction
as above between the category of A-algebras and that of B-algebras.

Example 7.0.1. Suppose that H is a subgroup of G, and k is a field. Then we can consider the
k-algebra k[H], whose elements are formal linear combinations of elements of H with coefficients
in k. Then we have an inclusion ϕ : k[H] → k[G]. Then we have a bijection between sets

{k[G]-modules} ↔ {representations of G on a k-vector space}.

We have a map ϕ∗ from G-representations to H-representations by restriction. As before, we can
construct a map ϕ∗ from H-representations to G-representations. In this context, our construction
is called the Frobenius reciprocity law.

There are many other pairs of interesting adjoint functors. Here is an example.

Example 7.0.2. Let A be a commutative ring, and letM andN be A-modules. If we fix an A-module
L, then an A-linear map fromM⊗AL→ N is the same as an A-linear map fromM → Hom(L,N).
Therefore, the functor −⊗A L is left adjoint to Hom(L,−). From this adjointness property, we see
that −⊗A N and M ⊗A − are right exact functors.

Before we can start discussing about the Galois theory of etale algebras, we will quickly go
through the basics of classical Galois theory. Let k be a field.

Definition 7.1. Let f ∈ k[x]. Then f is separable if gcd(f, f ′) = 1 in k[x]. This definition avoids
using an explicit algebraic closure, but it just means that f does not have roots of multiplicity
greater than 1.

Fact 7.2. Let f, g ∈ k[x], and let E be any field extension of k. Then gcd(f, g) in k[x] is the same
as gcd(f, g) in E[x].

Fact 7.3. f(x) ≡ f(a) + (x− a)f ′(a) (mod (x− a)2).
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These two facts show that this definition of separability agrees with our intuition.

Corollary 7.0.1. If f ∈ k[x] is separable, then f is separable in E[x] for any extension E of k, and
f does not have a double root in E.

Definition 7.2. Let α ∈ E. We say that α is separable over k if the irreducible polynomial of α is
separable.

From this, we immediately get the following:

Corollary 7.0.2. If char k = 0, any α ∈ E is separable.

Proof. Let f be the irreducible polynomial of α over k. Since char k = 0, this implies that f ′ is a
non-zero polynomial of degree strictly less than f . Hence gcd(f, f ′) = 1 and α is separable.

Separable irreducible polynomials do exist in non-zero characteristic.

Lemma 7.1. Assume that char k = p. Let g ∈ k[x] be a monic irreducible polynomial. Then there
exists a monic irreducible separable polynomial g0 and an exponent e ≥ 0 such that g(x) = g0(x

pe)
and this pair is uniquely determined by g.

Sketch. If g is irreducible but not separable, then g′ = 0, so g(x) = h(xp) for some h. Now
induct.

Definition 7.3. An algebraic extension E/k is called separable if every element α ∈ E is separable
over k.

Definition 7.4. Suppose that E/k is algebraic and α ∈ E. Then α is called purely inseparable if
αpn ∈ k for some n ≥ 0. This is equivalent to the fact that the irreducible polynomial of α is of the
form xp

m − a where a ∈ k.

Definition 7.5. Let k be the algebraic closure of k. Then the perfect closure of k is defined as

kperf = k
1

p∞ = {α ∈ k | α is purely inseparable}.

This is independent of the choice of k, in the following sense; if k
′
is another algebraic closure,

then there exists an isomorphism ϕ : k → k
′
. This induces an isomorphism of the perfect closures,

and this isomorphism is independent of the choice of ϕ.
We can view this closure in another way. If k is a field of characteristic p, then kperf is the

inverse limit of the tower where the maps are Frobenius endomorphisms.

Theorem 7.2 (Mac Lane). Let k be a field of characteristic p, and let E be an algebraic extension.
Then TFAE:

(1) E is separable over k.

(2) The map E ⊗k k
perf → Eperf is injective.

(3) E ⊗k k
perf is reduced.

(4) E ⊗k k
′ is reduced for any field extension k′ of k.

The condition (2) can be rephrased as E and kperf are linearly disjoint in Eperf.
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Definition 7.6. Let L/k be a field extension, and let E and F be intermediate fields. We say that
E and F are linearly disjoint in L if E ⊗k F → L is injective.

Lemma 7.3. E and F are linearly disjoint in L iff for any e1, . . . , en ∈ E which are linearly inde-
pendent over k, then e1, . . . , en are linearly independent over F .

Proof. Suppose that E ⊗k F → L is injective, and let e1, . . . , en ∈ E be linearly independent over
k. Suppose that there exist f1, . . . , fn ∈ F such that

e1f1 + · · ·+ enfn = 0.

By injectivity, this means that
e1 ⊗ f1 + · · ·+ en ⊗ fn = 0.

Pick a k-basis β of F . Then the elements ei ⊗ βj are linearly independent, so it follows that each
fi is 0. This proves that e1, . . . , en are linearly independent over F . The other direction can be
proved similarly by choosing bases.

Proof of Theorem 7.2. (1 ⇒ 4) Let’s first assume that E/k is finite separable. Then E = k(α). Let
f be the irreducible polynomial of α by the primitive element theorem. Then if f = f1 . . . fn is the
prime factorization of f ,

E ⊗k k
′ = k[x]/(f)⊗k k

′ = k′[x]/(f) =

n∏
i=1

k′[x]

(fi)
.

This is because fi are distinct since f is separable and we can use the Chinese Remainder theorem.
Hence this is isomorphic to a product of fields, which is obviously reduced.

(4 ⇒ 3) Obvious since the latter is a special case of the former.
(3 ⇒ 2) It suffices to show that E is linear disjoint from L for any L ⊂ kperf and L/k is finite,

say L = k(β1, . . . , βn). Let’s first treat the case when n = 1. Then the irreducible polynomial of β
is of the form xp

e − a for some a ∈ k. Then

E ⊗k L =
L[x]

(xpe − a)
.

This is either a field or non-reduced depending on whether xp
e − a is reducible in L or not (since

the factorization is of the form (xp
e′ − a′)p

e−e′
for some a′ ∈ L). The latter case cannot happen by

our assumption, so the former holds, i.e., E ⊗k L is a field, and E and L are linearly disjoint. The
general case can be handled similarly.

(2 ⇒ 1) Assume in contrary that E/k is not separable. Then there exists an element α ∈ E
such that α is not separable over k. Since k(α) is a subfield of E and E is linearly disjoint from
kperf, it follows that k(α) is also linearly disjoint from kperf. Note that the irreducible polynomial
of α can be written as f(Xpe), where f is irreducible separable and e > 0. Let deg f = d. Then
degα = dpe. Now observe that 1, α, . . . , αdpe−1 are linearly independent over k. By our assumption,
they are linearly independent over the perfect closure as well. However, if we write the irreducible
polynomial of α as xdp

e
+ a1x

(d−1)pe + · · ·+ ad, then this is a power of the polynomial g(x)p
e
with

coefficients in kperf. Hence the degree of α over kperf is less than or equal to d, which is strictly less
than dpe. This is a contradiction!
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§ Lecture 8

Now we can talk about one of the main objects of study in this course.

Definition 8.1. Let A be a commutative k-algebra such that dimk A is finite. We say that A is a
reduced k-algebra if A is reduced as a ring. (i.e. A has no non-zero nilpotent elements). We say
that A is an etale k-algebra if A⊗k k

′ is reduced k′-algebra for any field extension k′/k.

Example 8.1.1. If E/k is a finite field extension, then of course E is reduced. Moreover, E is an
etale k-algebra if and only if E is separable over k.

Fact 8.1. If A1 and A2 are reduced (resp. etale) k-algebras, then A1 × A2 is also reduced (resp.
etale).

Theorem 8.1. Let A be a commutative k-algebra of finite degree. Then A is reduced iff A ∼= E1 ×
· · · × En where Ei are finite extensions of k.

Proof. One direction follows readily from the observations that we made above. Now let’s show
another direction. It suffices to show that if A is reduced and not a field, then A ∼= A1 × A2 for
two reduced algebras A1 and A2 which are non-zero.

In order to decompose a ring R into the product of two rings R1 and R2, we can start by finding
a central idempotent e. Then 1− e is also a central idempotent, and we can map a 7→ ae+ a(1− e)
which is easily shown to give a ring isomorphism R → Re×R(1− e). (This is kind of like finding
an orthonormal basis and taking the dot products.)

Let I be a non-zero finitely generated proper ideal of A of minimal dimension. Now consider
the ideal I2 ⊆ I. This ideal is non-zero, because it must contain an element of the form a2 where
a ∈ I is non-zero. Therefore, by the minimality of dimension of I, this forces I2 = I. Now we can
use a nice little lemma from commutative algebra.

Lemma 8.2. Let A be a commutative ring, and I be a finitely generated ideal of A such that I2 = I.
Then I is principal and generated by an idempotent element.

Proof. Suppose that I is generated by u1, . . . , un over A. Then I = I2 implies that ui ∈ I2 =
Iu1 + · · ·+ Iun. This means that we can write

ui =

n∑
i=1

ajiuj , aji ∈ I.

Now let M be the matrix (aij). Then In −M sends the vector (u1, . . . , un) to 0. In particular,
det(In −M)ui = 0 for all i ≤ n. Note that this determinant is equal to 1 − e for some e ∈ I.
Therefore, eui = ui for each i. Since they generate I, it follows that eu = u for all u ∈ I, so in
particular e2 = e. Moreover, eA contains all ui, so eA ⊆ I ⊆ eA. Thus, I is a principal ideal
generated by e, and the lemma is proved.

This finishes the proof of the theorem as well.

Corollary 8.2.1. Let A = A1 × · · · × As be a reduced k-algebra, where each Ai is a finite field
extension of k. Then A is an etale k-algebra if and only if each Ai is separable over k.

Definition 8.2. Let A be a commutative algebra of finite dimension over k. We say that A is a
split etale k-algebra if A ∼= k × · · · × k.
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Lemma 8.3. Let A be a commutative algebra of finite dimension over k. Then A is etale if and
only if there exists a finite field extension k′ of k such that A⊗k k

′ is a split etale k′-algebra.

Proof. We may assume that A = E1 × E2 × · · ·Es where Ei/k is a finite separable extension.
It suffices to treat the case when s = 1. Assume that E = E1 = k[x]/(f) for some separable
polynomial f , and let k′ be a splitting field of f . Then

k[x]/(f)⊗ k′ ∼= k′[x]/(f) ∼=
deg f∏
i=1

k[x]/(x− αi) ∼=
deg f∏
i=1

k

by the Chinese Remainder Theorem.
For the other direction, by Mac Lane’s Theorem, it suffices to show that A⊗k k

perf is reduced.
Note that

A⊗k (k
′)perf = (A⊗k k

′)⊗k′ (k
′)perf =

n∏
i=1

k′ ⊗k′ (k
′)perf =

n∏
i=1

(k′)perf,

and so A ⊗k (k
′)perf is reduced. Since A ⊗k k

perf is a subring of this ring, it follows that it is also
reduced. Hence A is etale.
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§ Lecture 9

Theorem 9.1. Suppose that A and A′ are reduced, then so are A×A′, any subalgebra of A and any
quotient of A. If they are in addition etale, then the above three constructions and A⊗k A

′ are all
etale. Same goes for split etale algebras.

Proof. The fact that the product preserves these is obvious. For the quotient, note that A =
k1 × · · · × ks is a product of finite field extensions (resp. separable extensions). Any ideal of this
ring is of the form I1 × · · · × Is where Ij are either the zero ideal or the whole ring, the quotient is
still reduced (resp. etale). For the tensor product, use the previous proposition and note that the
tensor product of split etale algebras are split etale. If A is etale and S is a subalgebra of A, then
S ⊗k k

′ ⊆ A⊗k k
′ which is reduced, so S is also etale.

Let k be a field. Then we can consider two categories, first the category of split etale k-algebras
and the second the category of finite sets. Denote these by C and D. Then we have

Theorem 9.2 (Toy version). Cop and D are equivalent.

Proof. For any split etale A, we define X(A) = Hom(A, k) and for any set X, we define A(X) = kX .
We claim that these two functors are quasi-inverse to each other, so they give an equivalence between
the two categories.

Note that X ◦ A maps a set X to Hom(kX , k). For each element in x ∈ X, we can define a
map kX → k by evaluating at x (Here we are viewing kX as functions from X to k.) In the other
direction, for each element in a ∈ A, we can evaluate at a to get a map from Hom(A, k) → k, which
is precisely an element of kHom(A,k). Denote these maps by tX and rA.

We claim that tX and rA are bijections for all X and for all A. This is just checking.

Here is the main theorem that we are going to prove soon.

Theorem 9.3 (Grothendieck’s Galois theory). Let k be a field. Fix a finite Galois extension k/k.
Put G = Gal(k/k). Then the category of etale k-algebras that split after base change to k and the
category of finite G-sets are contravariantly equivalent to each other. The correspondence is given

by A 7→ Hom(A, k) and X 7→ (k
X
)G where the G-action on the latter set is (g ◦ ϕ)(x) = gϕ(g−1x).
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§ Lecture 10

Let k be a field, and let S be a set of monic, non-constant polynomials from k[x].

Lemma 10.1. If E1 and E2 are both splitting fields of S, then E1
∼= E2 as k-algebras.

There is another variant of this lemma which is more enlightening to prove.

Lemma 10.2. Let σ : k1 → k2 be an isomorphism of fields. Let S1 ⊆ k1[x] be a set of polynomials,
and let S2 = σ(S1). Assume that Ei/ki is a splitting field of Si. Then there exists an isomorphism
σ : E1 → E2 extending σ.

Proof. Let’s first prove the case when S1 = {f1}. We will do induction on deg f1. If deg f1 = 1,
it’s obvious. When deg f1 > 1, pick a root α1 of f1 in E1, and let g1 be the irreducible polynomial
of α1 over k1. Let g2 = σ(g1). Then g2 | f2. Choose a root α2 ∈ E2 of g2. Then we see that there
exists an isomorphism between k1(α1) and k2(α2), and this isomorphism extends σ. Now note that
Ei is also a splitting field of fi(x)/(x− αi) ∈ ki(αi)[x] over ki(αi), and we’re done by induction.

When S is finite but has multiple elements, then the splitting field of S is the same as the
splitting field of the polynomial which is the product of polynomials in S. Therefore, the above
case applies and we’re done.

The result is also valid for arbitrary S but we need to use transfinite induction. Write S =
{fi}i∈I , where I is a well-ordered set. For i ∈ I, let Es,i to be the subfield of Es generated by ks
and the roots of polynomials fj where j ≤ i. Suppose we have defined σi0 : E1,i0 → E2,i0 . If i is a
successor of i0, then E1,i is a splitting field over E1,i0 of fi, so we can extend σi0 to σi : E1,i → E2,i.
In the case when i is a limit ordinal, then

Es,i =
⋃
j<i

Es,j .

Since we have defined σj ’s for all the subextensions Es,j , and they’re compatible with each other,
it follows that we can define σi : E1,i → E2,i just by defining it elementwise. Hence we’re done by
transfinite induction.

Lemma 10.3. Let k be a field, and let E/k be an algebraic extension. Then TFAE:

1. E is algebraically closed.

2. E is a splitting field of the set of all monic polynomials of positive degree in k[x].

Proof. The fact that (1) ⇒ (2) is obvious. Now suppose that E is a splitting field of all monic
polynomials of positive degree in k, and let E′ be an algebraic extension of E. If α ∈ E′, then α
is algebraic over E and E is algebraic over k, so α is algebraic over k. Therefore, there exists an
irreducible polynomial f ∈ k[x] which has α as a root. Now note that f splits into linear factors
in E[x], so if α is a root of f , then it must be an element of E. This proves that E′ = E, so E is
algebraically closed as desired.

Definition 10.1. A field extension k/k is called an algebraic closure of k, if k is algebraic over k,
and it is algebraically closed.

Then the above lemma proves that

Corollary 10.3.1. An algebraic closure of k exists, and any two algebraic closures of k are isomorphic
as k-algebras.
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Definition 10.2. E is separably closed iff any separable extension of E is trivial.

Now we state an analogous statement.

Lemma 10.4. Let k be a field, and let E/k be a separable extension. Then TFAE:

1. E is separably closed.

2. E is a splitting field of the set of all monic, separable polynomials of positive degree in k[x].

To prove this, we need a lemma which is an analgoue of the statement for algebraic extensions.

Lemma 10.5. Let E′/E/k be a tower of field extensions. Suppose that E′/E is separable and E/k
is separable. Then E′/k is separable.

Proof. We claim that E ⊗k k
perf ∼= Eperf. Once we prove this claim, then

E′ ⊗E E
perf = E′ ⊗E (E ⊗k k

perf) = E′ ⊗k k
perf.

But the algebra on the left is reduced since E′ is separable over E. Therefore, the algebra on the
right is also reduced, and hence E′ is separable over k.

We now prove the claim. Consider α ∈ E, and let d be the degree of α over kperf. Then
the seemingly bigger extension kperf(α1/p)/kperf also has degree d. This is because if we write
f(x) = a0 + a1x + · · · + ad−1x

d−1 to be the irreducible polynomial of α over kperf, we can find
elements bi ∈ kperf such that bpi = ai. Then if we define g(x) = b0 + b1x + · · · + bd−1x

d−1, we see
that

g(α1/p)p =

d−1∑
i=0

bpiα
i =

d−1∑
i=0

aiα
i = f(α) = 0,

so g is a polynomial of degree d having α1/p as a root. Therefore, kperf(α1/p) = kperf(α), so

α1/p ∈ kperf(α) ⊆ Ekperf. This shows that α
1
pn ∈ Ekperf, so we must have Eperf ⊆ Ekperf.

Meanwhile, all the elements of Ekperf belong to Eperf since all such elements are rational functions
of a finite number of elements of E and kperf, and we can choose a sufficiently large power of p
to bring those elements in kperf into k. Therefore, Ekperf = Eperf. Finally we use the separability
condition: since E is separable over k the surjection E ⊗k k

perf → Ekperf is an isomorphism and
we’re done.

We will now prove the primitive element theorem which is very handy when dealing with finite
separable extensions. Before this, we need a lemma.

Lemma 10.6. Let E/k be a finite field extension, and suppose that there are only finitely many fields
M such that k ⊆M ⊆ E. Then E/k is simple.

Proof. The result is obvious when k is finite, since every finite extension of a finite field is simple.
Now assume that k is infinite. We write E = k(α1, . . . , αn), and we induct on n. When n > 1,
by induction hypothesis, k(α1, . . . , αn−1) is simple, so it is generated by some θ′. Now consider
k(θ′+ cαn), where c ∈ k. This gives an infinite family of field extensions lying between E and k, so
by the assumption, this gives two distinct elements c and c′ such that k(θ′ + cαn) = k(θ′ + c′αn).
Then this extension contains both θ and αn, so it must contain E, and hence equal to E. This
proves that E/k is simple as desired.

Corollary 10.6.1 (Primitive element theorem). Let E/k be a finite, separable extension. Then E/k
is simple.
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Proof. By the above lemma, we just need to show that there are only finitely many fields between
E and k. Let k′ be an extension of k such that E ⊗k k

′ is a split etale k′-algebra. Given any
intermediate field M , we can form a k′-subalgebra of E ⊗k k

′ just by tensoring with k′. This map
is injective, but the set of k′-subalgebras of E ⊗k k

′ is finite. Therefore, we’re done.

Theorem 10.7. Let E/k be an algebraic extension. TFAE:

1. E is a splitting field of S for some S ⊆ k[x].

2. For any algebraic closures k/k and any k-algebra homomorphisms σ, σ′ : E → k, the images
are the same.

3. For any irreducible f ∈ k[x], if f has a root in E, then f splits completely in E[x].

Proof. (1) ⇒ (2): Let T be the set of roots of polynomials in S in E. Then by definition, E = k(T ).
Then σ(E) = k(σ(T )) and σ(E′) = k(σ′(T )). But note that the definition of σ(T ) and σ′(T ) are
completely independent of σ and σ′ (they are just the elements of k which are the roots of the
polynomials in S). Therefore, σ(T ) = σ′(T ) and we’re done.

(2) ⇒ (3): Suppose that f is an irreducible polynomial in k[x]. WLOG, assume that E is
contained in a fixed algebraic closure k, let α be a root of f ∈ E, and let α′ be any other root
of f in k. Then we can construct a homomorphism k(α) → k which maps α to α′, and this
homomorphism can be extended to get a homomorphism E → k. However, we know that the
image of this homomorphism must be E itself. Therefore, α′ ∈ E, and it follows that f splits in
E[x].

(3) ⇒ (1): Take a subset T ⊂ E such that E = k(T ). Let S be the set of irreducible
polynomials of elements in T . Then each polynomial in S splits in E by our assumption, and the
roots of polynomials in S contain T so they certainly generate E. Therefore, E is the splitting field
of S over k.

Definition 10.3. If E/k satisfies these equivalent conditions, we say E/k is a normal extension.

Definition 10.4. An algebraic extension E/k is Galois if the extension is both separable and normal.

Definition 10.5. The Galois group of a Galois extension E/k is the set of automorphisms of E
which fix k.

It turns out that this group has more structure than just being a group. As a start, we will
put a topology on G. Let EE be the set of maps from E → E. Then this set can be thought of as∏

i∈E E. We can then give each copy of E the discrete topology, and give the set EE the product
topology. Now since G is a subset of EE , we can endow G with the subspace topology.
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§ Lecture 11

In the following, we denote the separable closure of a field k by ksep.
We’re now in a position to prove Theorem 9.3.1 Let k be a field, and let k be a finite Galois

extension of k with Galois group G. We want to prove that there is an anti-equivalence between
the category of etale k-algebras A such that A ⊗k k is a split etale k-algebra, and the category of
finite G-sets. The equivalence functors are given by

X : A 7→ Homk(A, k) and A : X 7→ (k
X
)G

Here, the G-action on k
X

is given by (g · f)(x) = g(f(g−1 · x)). This condition is equivalent to the
fact that f is a G-set homomorphism from X to k (Remember that the underlying set of k has a

G-set structure almost by definition.) To see this, if we replace g−1 · x by y, then f ∈ (k
X
)G iff

(g · f)(x) = f(x) ∀x ∈ X,∀g ∈ G⇐⇒ f(g · y) = g(f(y)) ∀y ∈ X,∀g ∈ G.

Therefore, A(X) = HomG-Set(X, k).
Below are some properties of this equivalence that will be useful for later.

(1) If A corresponds to X, then dimk A = |X|.

(2) X and A invert categorical constructions. In particular, if A1 is an etale algebra which
corresponds to the G-set X1 and A2 corresponds to X2, then A1×A2 corresponds to X1⊔X2.

We will prove the second property first.

Proof. Let A be an etale k-algebra, and let A = F1×F2×· · ·×Fn be its representation as a product
of separable field extensions of k. If ϕ : A → k is a homomorphism, then the kernel of this map
must be a prime ideal, which can only be of the form F1 × · · · × Fi−1 × Fi+1 × · · · × Fn for some
i. Consequently, ϕ is composed of a projection onto Fi followed by a homomorphism from Fi to k.
Therefore, it follows that

Homk(A, k) =
n⊔

i=1

Homk(Fi, k).

From this, it is obvious that if A1 and A2 are two etale algebras, then Homk(A1 × A2, k) =
Homk(A1, k) ⊔Homk(A2, k).

Now let X be a G-set, and let X = X1 ⊔X2 ⊔ · · · ⊔Xn be its decomposition into orbits. Pick
an orbit Xi, and let xi be an element in the orbit. Then any G-set homomorphism from Xi to k
is determined by the image of the element x. This image can be any element in the subfield of k
fixed by the stabilizer of xi. Therefore,

HomG-Set(X, k) =

n∏
i=1

HomG-Set(Xi, k) =

n∏
i=1

kStab(xi).

From this, it is obvious that if X1 and X2 are two G-sets, then

HomG-Set(X1 ⊔X2, k) = HomG-Set(X1, k)×HomG-Set(X2, k).

The first property is just a corollary of this.

1For a proof of this theorem in the case when the extension is the separable closure of k, see Theorem 2.9 in
https://websites.math.leidenuniv.nl/algebra/GSchemes.pdf

24

https://websites.math.leidenuniv.nl/algebra/GSchemes.pdf


Corollary 11.0.1. dimk A = |Homk(A, k)| for any k-algebra A such that A⊗k k is a split k-algebra.

Proof. Note that if A splits over k, then all the Fi also split over k. Since Fi are separable, this
means that |Homk(Fi, k)| = dimk Fi. Since dimk A =

∑n
i=1 dimk Fi, the result follows.

Remark. Actually, we can prove a stronger proposition. Let A be a d-dimensional k-algebra. Then
for any field extension k/k, |Homk(A, k)| ≤ d with equality if and only if A is etale. If A′ = A⊗k is
not reduced, then we can consider the nilradical I. I is contained in the kernel of any homomorphism
from A′ to k, and A′/I is reduced, so

Homk(A, k) = Homk(A
′, k) = Homk(A

′/I, k) = dimk(A
′/I) ≤ d.

Corollary 11.0.2. |dimk(k
X
)G| = |X|.

Proof. If this is true for X = X1 and X2, then it is also true for X1 ⊔ X2. Therefore, we may
assume that X is a single orbit = G/H. Again, as k-algebras,

(k
X
)G = HomG-Set(X, k) = HomG-Set(G/H, k) ∼= k

H
.

Hence what we’re trying to show is just that dimk(k
H
) = |G/H|. This follows from classical Galois

theory, but we can also use the following theorem by Artin.

Theorem 11.1 (Artin). Let E be a field, and let H be a finite subgroup of Aut(E). Put k = EH .
Then E/k is Galois of degree |H| with Galois group H.

Proof. Let α ∈ E, and let

f(x) =
∏
σ∈H′

(x− σ(α)).

where H ′ is the quotient of H by the stabilizer of α ∈ H. Then the coefficients of this polynomial
are fixed by H, so they belong to k. This shows that α has degree at most |H|. Moreover, α is
separable since f has distinct roots and the minimal polynomial of α must divide f .

We now claim that E/k is finite of degree at most |H|. Take α ∈ E such that [k(α) : k] is
maximum. If k(α) is not the whole field E, then there exists an element β outside of k(α). Then
the field extension k(α, β) is strictly bigger than k(α), and since this is a finite separable extension,
this implies that there exists a γ that generates this extension; this γ then has bigger degree than
α which is a contradiction.

Now note that given any homomorphism from E → k, we can compose it with an element of
H to get another homomorphism from E → k. Since E/k is separable,

[E : k] = [E : k]s := |Homk(E, k)| = |H||number of distinct images of E in k|.

This proves that [E : k] = |H|, and that E has fixed image in k, so E is a normal extension of k.
Hence E is Galois, and the Galois group of E is precisely H.

[Scribbling my own thoughts...]
Here is a version of Grothendieck’s Galois theory when the field extension is not necessarily

finite (we are looking at Gal(ksep/k) which is really big.) In this case, we have to consider the Krull
topology on the Galois group to maintain the Galois correspondence. The following notes are taken
from Szamuely’s Galois Groups and fundamental Groups. These were written way before I revised
this part, so a lot of the steps are redundant. They are not part of the lectures, and there may be
some errors.
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Theorem 11.2. Let k be a field, and fix a separable closure ks of k. Let Gal(k) = Gal(ks/k). Then
the functor mapping a finite etale k-algebra A to the finite set Homk(A, ks) gives an anti-equivalence
between the category of finite etale k-algebras, and the category of finite sets with continuous left
Gal(k)-action. Here, separable field extensions give rise to sets with transitive Gal(k)-action, and
Galois extensions to Gal(k)-sets isomorphic to finite quotients of Gal(k).

Before proving this, we will prove the special case for finite separable extensions. The statement
goes as follows:

Theorem 11.3. Let k be a field with a fixed separable closure ks. The contravariant functor mapping
a finite separable extension L/k to the finite Gal(k)-set Homk(L, ks) gives an anti-equivalence be-
tween the category of finite separable extensions of k and the category of finite sets with continuous
and transitive Gal(k)-action. Here, Galois extensions give rise to Gal(k)-sets isomorphic to some
finite quotient of Gal(k).

Proof. Let L/k be a finite separable extension. Then the Gal(k)-action on Homk(L, ks) is given by
g · ϕ = g ◦ ϕ.
Claim 1. This action is continuous.

Proof of Claim 1. Recall that the G-action on a finite set X with discrete topology is continuous
iff the stablizer of any element x ∈ X is open in G. To see this, pick any element x ∈ X. Then the
preimage of x under the map is the set of tuples (g, y) such that gy = x. This can be written as a
union ⋃

y∈G
{(g, y) | gy = x} =

⋃
y∈G

Gy.

If y is not in the same orbit as x, then Gy is the empty set. If y is in the same orbit, then
Gy = Stab(x)g for any g ∈ Gy. Since right multiplication by g is a homeomorphism, Gy is open if
Stab(x) is open in G. Conversely, if the G-action is continuous, then the map G → X defined by
g 7→ (g, x) 7→ gx is continuous. Now observe that Stab(x) is the preimage of x under this map, and
since X has the discrete topology, Stab(x) must be open.

Now let’s apply this to our case. Take any embedding i : L → ks which fixes k, and let U be
the stabilizer subgroup of i under the Gal(k)-action. Then U is precisely the elements of Gal(k)
which fix the image of L under i. Equivalently, we have U = Gal(ks/i(L)). Since dimL/k is finite,
U is closed with finite index in Gal(k) due to Galois correspondence. Hence it is open and we’re
done.

This action is also transitive on Homk(L, ks). By the primitive element theorem, L = k(θ) for
some θ. Let f be the minimal polynomial of θ over k. Then each homomorphism in Homk(L, ks)
corresponds to a root of f in ks, and for any two roots in ks there exists an automorphism of ks/k
mapping one to the other. Therefore, we have proven that this functor is at least well-defined on
the objects. Regarding the maps, it is easy to show that if L and M are finite separable extensions
of k and f : L → M is a homomorphism fixing k, then f∗ : Homk(M,ks) → Homk(L, ks) defined
by ϕ 7→ ϕ ◦ f is a Gal(k)-set homomorphism.

Claim 2. This functor is essentially surjective.

Proof of Claim 2. Let X be a finite set with continuous, transitive Gal(k)-action. Take any element
s. Then the stabilizer U = Stab(s) ⊆ Gal(k) is open, so it is a closed subgroup of finite index.
Therefore, by Galois correspondence, we can consider the fixed field L = kUs . We now claim that
Homk(L, ks) ∼= X as Gal(k)-sets. Note that X is isomorphic to the space of left cosets of U in
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Gal(k) under left multiplication (The isomorphism is given by mapping any element y to the coset
gU where g is any element of Gal(k) such that gs = y.) However, also note that Homk(L, ks) is
also isomorphic to this set. The elements of U are precisely the ones that fix the natural inclusion
i : L→ Ks, and we can safely map the embedding g ◦ i to the coset gU .

Claim 3. This functor is fully faithful.

Proof of Claim 3. Let M and L be finite separable extensions of k. Then we have to show that
this functor induces a bijection between the following two sets

{maps from L to M} ⇐⇒ {maps from Homk(M,ks) to Homk(L, ks)}.

Fix any element ϕ ∈ Homk(M,ks). Since Homk(M,ks) is a transitive Gal(k)-set, any map from
Homk(M,ks) to Homk(L, ks) is completely determined by its image of ϕ. Take any such map f .
Since f is a Gal(k)-set homomorphism, the stabilizer of ϕ must also fix the stabilizer of f(ϕ), so
U = Stab(ϕ) ⊆ Stab(f(ϕ)) = V . Via the Galois correspondence, this gives us two subfields M ′ and
L′ fixed by U and V respectively, and we see that L′ ⊆M ′ and that L′ = f(ϕ)(L) and M ′ = ϕ(M).
If we denote ψ : ϕ(M) →M be the inverse isomorphism, then ψ◦f(ϕ) is the unique homomorphism
in Homk(L,M) that induces f as desired.

Combining all of this establishes an equivalence between the two categories. Note that when
L/k is Galois, the stabilizer subgroup is normal, so the space of left cosets is actually isomorphic
to the quotient of the Galois group by the stabilizer. This completes the proof.

Now we are ready to provide a proof of Theorem 11.3.

Proof of Theorem 11.3. Let A be a finite etale k-algebra, and write A as a product L1×L2×· · ·×Ln

which are finite separable extensions of k.

Claim 1. Any k-algebra homomorphism in Homk(A, ks) can be factored as a projection onto one
of the Li followed by an embedding in Homk(Li, ks).

Proof of Claim 1. Note that the kernel of any homomorphism in Homk(A, ks) must be a prime
ideal, hence it can only be of the form L1×· · ·×{0}× · · ·×Ln. Therefore, the image is isomorphic
to one of the Li, and by the universal property of quotients, we can find a unique map from Li → ks
such that our desired property holds.

This claim shows that Homk(A, ks) can in fact be realized as the disjoint union of Homk(Li, ks),
and since the Gal(k)-action on these sets is transitive, this is in fact the orbit decomposition of
Homk(A, ks). This lets us prove essential surjectivity: given a finite set X with continuous Gal(k)-
action, we can decompose it into its orbits, and then construct a finite separable extension Li for
each orbit, and finally take their product to get the desired etale k-algebra.

Similarly, a map between etale k-algebra A =
∏

i Li and A′ =
∏

j L
′
j is a collection of maps

from some Li to each L′
j for all j. For each of these maps, we get a unique map Homk(L

′
j , ks) →

Homk(Li, ks). Finally, we get a map from the disjoint union Homk(A
′, ks) → Homk(A, ks). This

argument shows that the functor is fully faithful.

[Scribbling ends]

27



§ Lecture 12

We recall the fundamental theorem:

Theorem 12.1. Let k/k be a finite Galois extension of fields, and let G = Gal(k/k). Then let Etk
be the category of etale k-algebras k such that A ⊗k k is a split-etale k-algebra. Let G-Set be the
category of finite G-sets with continuous G-action. Then Etk and G-Set are anti-equivalent. The

functors are given by X(A) = Homk(A, k) and A(X) = (k
X
)G.

Proof. We have to show two natural isomorphisms: first, that

A ∼= (k
Hom(A,k)

)G,

and that
X ∼= Homk((k

X
)G, k).

We have already shown before that

dimk A = |Homk(A, k)| and |X| = dim(k
X
)G.

To prove the first bijection, we may assume that A is a separable field extension of k. Let the

evaluation map from A → (k
Hom(A,k)

)G be ϕ. Then ϕ is non-zero and hence injective. Since these
k-algebras both have the same dimension over k, it follows that ϕ is an isomorphism. The general
case follows from writing A as a product of separable extensions.

To prove the second bijection, let ψ be the map under consideration. Note that both the left
hand side and right hand side have the same size, so we just need to show that ψ is injective.

Therefore, take x, x′ ∈ X. Then we need to find some f ∈ (k
X
)G such that f(x) ̸= f(x′). If x, x′

are not in the same G-orbit, then we can take f(y) = 1 if y is in the G-orbit of x, and 0 otherwise.

This function is evidently invariant under the Galois group, so it belongs to (k
X
)G, and satisfies

f(x) = 1 and f(x′) = 0. Therefore, assume that x′ = gx for some x.

Consider the set of functions f ∈ (k
X
)G such that f = 0 outside the G-orbit of x. This orbit

is isomorphic to the coset G/H where H = StabG(x). Therefore, we can identify this set with the

set k
H
. If an element g′ fixes k

H
, then g′ ∈ Gal(k/k

H
) = H, so as g ̸∈ H, we can find some a ∈ k

H

such that a ̸= ga. Let f(x) be such that f(x) = a. Then f(x′) = f(gx) = ga =⇒ f(x) ̸= f(x′).

We now show that Grothendieck’s formulation implies the classical fundamental theorem of
Galois theory.

Theorem 12.2. Suppose that we have a finite Galois extension k/k with Galois group G. Then there
exists an inclusion-reversing bijection between subgroups of G and intermediate fields F such that
k ⊆ F ⊆ k. The correspondence is given as follows: given a field F , we can take its automorphism

group Gal(k/F ), and given any subgroup H, we can take its fixed field k
H
.

Proof. Our first goal is to convert this into categorical language. We can view the subgroups of G
as subobjects of the G-set G/{1} in the opposite category of G-Set. On the other hand, k-subfields
of k are subobjects of k in the category of etale k-algebras that split over k. These are in bijection
by Grothendieck’s formulation.

Corollary 12.2.1. Under this correspondence, F/k is Galois iff H ⊴ G.
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Proof. F/k is Galois iff |AutG-Set(G/H)| = [G : H]. However, note that AutG-Set(G/H) =
NG(H)/H. Therefore, this implies that NG(H) = G, which means that H is normal in G.

Theorem 12.3 (Normal basis theorem). Let E/k be a finite Galois extension of fields. Let G =
Gal(E/k). Then there exists a ∈ E such that {ga}g∈G is a basis of the k-vector space E. In other
words, E as a k[G]-module is free of rank n.

One way to solve such a problem is to generalize the statement into that of an etale algebra.
Therefore, we want to define what we mean by an etale k-algebra to be Galois. Obviously, our
definition should cover all the Galois extensions of fields E/k, and it should also be stable under
base change; E ⊗k k

′ should be Galois over k′. Therefore, we define

Definition 12.1. Let G be a finite group, and k be a field. A Galois G-algebra over k is a pair
(A,α) such that

1. A is an etale k-algebra,

2. α is a group homomorphism from G to Autk(A),

3. |G| = dimk A, and

4. AG = k.

As usual, suppose that k/k is a finite Galois extension such that A ⊗k k is split, and let
Γ = Gal(k/k). We want to investigate the properties of the Γ-set X = Homk(A, k) corresponding
to A. This set also has many properties:

1. X is a finite Γ-set,

2. G acts on X by Γ-set automorphisms on the right,

3. |G| = |X|,

4. XG is a singleton, i.e., the G-action is transitive.2

More explicitly, if σ = α(g) is an automorphism of A, then the action of g on X = Homk(A, k) is
defined by ϕ ·g = ϕ◦σ. The reason why this is a right action is because we have an anti-equivalence
instead of an equivalence between Etk and Set.

Remark. We often think of X as a set in which Γ acts on the left and G acts on the right, such
that (γx)g = γ(xg). The last two conditions imply that X is a principal homogeneous space of G
as a G-set.

We can now state the generalized version of the normal basis theorem.

Theorem 12.4. Let (A,α) be a Galois G-algebra. Then there exists a ∈ A such that {ga}g∈G is a
basis of the k-vector space A.

We will first prove this when k is infinite.

2Proof can be found in Prop. 18.14 in “The Book of Involutions” by Merkurjev, Tignol and Knus.
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Proof. Observe that if A is split, then the theorem is true. If we write A = kX , viewing elements of
A as tuples indexed over the set X, then we see that Homk(A, k) ∼= X as sets; each homomorphism
is just a projection onto the x-th coordinate for each x ∈ X. However, the first set has a right G-
action, so we can transfer this action to the set X itself; if f is projection onto the x-th coordinate,
then f · g is the projection onto the x · g-th coordinate. In particular, if we fix an x0 and denote
by δx0 the tuple whose value is 1 at x0 and 0 otherwise, then we see that the x-th coordinate of
gδx0 is the same as x · g-th coordinate of δx0 . Since X is a principal homogenous space of G, for
any x ∈ X we can find a unique g such that x · g = x0. Then we see that gδx0 is a tuple which is 1
at x-th coordinate and 0 otherwise. Therefore, {gδx0}g∈G is just the standard basis of kX .

For the general case, we want to base change to a bigger field such that the algebra becomes split,
and use the above case. But first, we need to know when a ∈ A, where A is split, gives a normal
basis {ga}g∈G. It is easy to see that this is the case when the matrix (σ(ga))g∈G,σ∈Homk(A,k) is non-
singular (by the above, all the elements in Homk(A, k) are projections.) In fact, this holds even
when A is not split. The proof is by a base change argument. Let k′/k be such that A′ := A⊗k k

′

is a split k′-algebra. Then A′ is also a Galois G-algebra with G-action given by g(a⊗ b) = ga⊗ b.
Now note that {ga}g∈G is a k-basis of A iff {ga ⊗ 1}g∈G is a k′-basis of A ⊗k k

′. Moreover, we
also have Homk(A, k) = Homk′(A

′, k′), so it turns out that the matrices (σ(ga))g∈G,σ∈Homk(A,k) and
(σ(ga ⊗ 1))g∈G,σ∈Homk′ (A

′,k′) are the same. Therefore, the former is invertible iff the latter is, and
this proves the claim.

Let v1, . . . , vn be a basis of A over k. Then a =
∑
civi gives rise to a normal basis iff

(σ(ga))g∈G,σ∈Hom(A,k) is non-singular. Call this matrix M(a). This matrix is non-singular iff
det(M(a)) is non-zero, which is a polynomial in c1, . . . , cn with coefficients in k, say F . The
normal basis theorem in the split case then implies that there exists c1, . . . , cn ∈ k′ such that
F (c1, . . . , cn) ̸= 0. Assuming our field k is infinite, this implies that there exists c1, . . . , cn ∈ k such
that F (c1, . . . , cn) ̸= 0 (otherwise it’d be the zero polynomial.)
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§ Lecture 13

We continue to prove the normal basis theorem in the case when k is a finite field. For simplicity,
assume that A is a field. Such an extension is necessarily cyclic by finite field theory.

Lemma 13.1. Let A/k be a finite Galois extension such that Gal(A/k) is cyclic of order n. Let σ
be a generator. Then there exists an element α ∈ A such that {σiα} is a basis of A.

Proof. Note that we can view A as a k[x]-module by mapping x to σ. Then by the fundamental
theorem for finitely generated modules over a PID, we see that this module is isomorphic to

k[x]

(f1)
⊕ · · · ⊕ k[x]

(fs)
,

where f1 | f2 · · · | fs | xn − 1. Now assume that s ≥ 2. Then deg fs < n, and the module is killed
by fs. This means that if we write fs = c0 + c1x+ · · ·+ cdx

d, then

c0 + c1σ(a) + c2σ
2(a) + · · ·+ σd(a) = 0

for all a ∈ A. However, a result of Dedekind shows that id, σ, . . . , σn−1 are linearly independent.
This implies that s = 1, so deg fs = n, and hence fs = xn − 1. Therefore, A is isomorphic to
k[x]/(xn − 1) as k[x]-modules. If we denote the image of x by α in this isomorphism, then α
satisfies the property that we desire.

Recall the definition of a Galois G-algebra A and its corresponding G-set X := Hom(A, k). Let
k be a finite Galois extension of k such that A ⊗k k is split etale, and let Γ be the Galois group
Gal(k, k).

Lemma 13.2. We have a natural bijection between Galois G-algebras over k that split over k and
group homomorphisms from Γ to G up to conjugation by G. The latter is in bijection with Γ-actions
on a G-principal homogeneous space.

Proof. We first prove the second statement. Fix a G-principal homogeneous space X. Then a
Γ-action on X is just a group homomorphism Γ → AutG-Set(X). However, the latter is isomorphic
to G, since once we fix a point x0 ∈ X, any G-set automorphism of x0 is determined by the
image of x0. This gives us a group homomorphism from Γ → G. However, different choices of the
base point x0 can give different homomorphisms, and each of them are conjugates of each other.
This shows that Γ-actions on X are in bijective correspondence with conjugacy classes of group
homomorphisms from Γ to G.

The first statement now follows from the above; any Γ-action on a G-PHS X corresponds to a
Galois G-algebra over k that splits over k according to the discussion after Definition 12.1.

As a corollary of this, we obtain

Corollary 13.2.1. If G is abelian, then Galois G-algebras over k that split over k are in correspon-
dence with group homomorphisms from Γ to G.

We illustrate the power of the principle above by some examples.

Fact 13.1. Assume that k is a field. Let

µn(k) = {a ∈ k× | an = 1},

be the n-th roots of unity in k, and suppose that |µn(k)| = n. Then for any a ∈ k×, k(a
1
n )/k is

Galois with Galois group a subgroup of µn(k).
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Proof. Let F = k(a
1
n ). Then F/k is the splitting field of xn − a, which is also separable; hence it

is Galois. Therefore, Gal(F/k) acts on the set X of roots of xn − a. However, note that X is also
a µn(k)-PHS, and the two actions commute since µn(k) ∈ k×. This shows that there is a canonical
homomorphism which embeds Gal(F/k) in µn(k).

Fact 13.2. Let char(k) = p > 0, and for any a ∈ k, let α be a root of xp − x − a. Then k(α)/k is
Galois with Galois group a subgroup of (Fp,+).

Proof. Note that if α is a root of xp−x−a, then the other roots are exactly α+1, α+2, . . . , α+p−1.
Hence k(α) is normal over k, and α is of course separable over k so this is a Galois extension. Now
note that the action of the Galois group commutes with the action of (Fp,+) on the set of these
roots which we call X. Therefore, there exists an embedding of Gal(F/k) inside AutFp-Set(X) =
(Fp,+).

Fact 13.3. Let k be a field such that n ̸= 0 in k, and let k(µn) be the splitting field of xn − 1 over
k. Then this extension is Galois and its Galois group embeds into (Z/nZ)× canonically.

Proof. Let X be the set of generators of µn. Then Gal(k(µn)/k) acts faithfully on X. In fact, note
that for any cyclic group C of order n, the set of generators of C is a PHS of Aut(C) = (Z/nZ)×.
By the boilerplate above, we see that Gal(k(µn)/k) embeds into (Z/nZ)×.

In fact, we can even prove the classic theorem on solvability by radicals.

Theorem 13.3. If f(x) ∈ k[x] has roots solvable by radicals, then Galois group of the splitting field
of f is solvable.

Remark. The converse of this is also true!

This follows from

Theorem 13.4. Suppose that |µn(k)| = n, and K/k is a Galois extension such that the Galois group

Gal(K/k) is cyclic of order n. Then K = k(a
1
n ) for some a ∈ k×. If char(k) = p, and Gal(K/k)

is cyclic of order p, then K is the splitting field of xp − x− a for some a ∈ k.

This theorem follows from the following famous result.

Theorem 13.5 (Hilbert’s Theorem 90). Suppose that K/k is a Galois extension with cyclic Galois
group generated by σ. Then

1. NK/k(α) = 1 iff α = σ(β)/β for some β ∈ K×, and

2. TK/k(α) = 0 iff α = σ(β)− β for some β ∈ K×.

Proof. Recall that

Fact 13.4. Suppose that A is an etale k-algebra, and let ksep denote the separable closure of k. Then

NA/k(α) =
∏

σ∈Hom(A,ksep)

σ(α),

and
TA/k(α) =

∑
σ∈Hom(A,ksep)

σ(α).
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Proving this is quite routine; we just need to show this for the case when A is split etale as
TA⊗ksep/ksep(α ⊗ 1) = TA/k(α), and in the latter case it is obvious. If we apply it to our case, we
see that

NK/k(α) =
∏

σ∈Gal(K/k)

σ(α), and TK/k(α) =
∑

σ∈Gal(K/k)

σ(α)

and similarly for trace. This shows one direction.
Now suppose that TK/k(α) = 0. By the normal basis theorem, we can choose an element γ such

that {σiγ} is a basis of K. Write α =
∑n−1

i=0 ciσ
i(γ). Then since trace is linear,

TK/k(α) =
n−1∑
i=0

ciTK/k(σ
i(γ)) = (c0 + · · ·+ cn−1)TK/k(γ).

However, the trace form is non-degenerate for separable extensions, so TK/k(α) = 0 iff
∑n−1

i=0 ci = 0.
From this, we see that α = β − σ(β), where

β = c0γ + (c0 + c1)σ(γ) + (c0 + c1 + c2)σ
2(γ) + · · ·+ (c0 + · · ·+ cn−1)σ

n−1(γ).

The multiplicative case a bit harder to prove. In general, we can show that

Theorem 13.6 (Hilbert’s Theorem 90 (Cocycle form)). Let K/k be a Galois extension with Galois
group G. Suppose that we have a set {as}s∈G where as ∈ K× such that ast = as s(at). Then there
exists b ∈ K× such that as = b−1s(b) for all s ∈ G.

Suppose that NK/k(α) = 1. Then since our Galois group is a cyclic group generated by σ, we
can define ae = 1 and aσ = α, and the rest of the elements must be automatically defined. More
explicitly, aσi = ασ(α)σ2(α) · · ·σi−1(α). It is easy to check that this satisfies the condition above
by using the fact that the norm is equal to 1. Then the theorem implies that α = aσ = b−1σ(b).

Actually, the cocycle form can be made a little bit simpler if one knows some group cohomology.
We start with a definition.

Definition 13.1. Let M be a G-module, i.e., an abelian group equipped with a G-action. We say
that a map ϕ : G→M is a crossed homomorphism if

ϕ(gh) = gϕ(h) + ϕ(g), ∀g, h ∈ G.

We say that ϕ is a principal crossed homomorphism if there exists some m ∈ M such that ϕ(g) =
gm−m.

It is easy to check that any principal crossed homomorphism is also a crossed homomorphism,
but the converse is not true. However, Hilbert’s Theorem 90 gives a converse in the case when the
G-module is the multiplicative group of a Galois extension.

Theorem 13.7. Let K/k be a Galois extension with Galois group G. Note that K× has a natural
G-module structure. Then any crossed homomorphism from G to K× is principal.

We are going to prove the generalized case when K is a Galois G-algebra, and as are allowed
to be elements of GLn(K). In fact, there is yet another form of this theorem.

Definition 13.2. Let M be a K-module. A descent datum on M is an action of G on M satisfying
g(αm) = g(α)g(m). If M and M ′ are K-modules with descent datum, then a morphism from
ϕ :M →M ′ is a K-module morphism that is compatible with the group action.
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Theorem 13.8 (Hilbert’s Theorem 90 (Descent form)). 3 Let K/k be a Galois G-algebra. Let C be
the category of k-vector spaces and let D be the category of K-modules with descent datum. Then
these two categories are equivalent. The equivalence functor F from C to D is

V 7→ V ⊗k K.

where the canonical descent datum on the latter is given by

g
(∑

vi ⊗ αi

)
=
∑

vi ⊗ g(αi).

Meanwhile, the functor G from D to C is given by

M 7→MG,

the submodule of M fixed under G by the action.

3This theorem is more well-known as Galois descent. Here are some good notes on this topic.
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§ Lecture 14

We will first show that the descent form of Hilbert’s Theorem 90 implies the cocycle form.

Proof. Consider Kn, where G acts componentwise. Then define a new action of G on Kn by

g ∗m = agg(m).

We can do this since ag ∈ Mn(K) and g(m) ∈ Kn so this is just matrix multiplication. We claim
that this is a descent datum on Kn. Let’s first check that this is an action.

s ∗ (t ∗m) = s ∗ (att(m)) = ass(att(m)) = ass(at)s(t(m)) = astst(m) = st ∗m,

where we used the fact that s ∈ G = Gal(K/k) and hence it preserves field operations. Moreover,

s ∗ (am) = ass(am) = ass(a)s(m) = s(a)ass(m) = s(a)(s ∗m).

Note that s(a) ∈ K so it is a scalar. Therefore, ∗ is indeed a descent datum on Kn.
Now letW be the fixed subspace of Kn, viewed as a k-vector space. ThenW ⊗kK is a K-vector

space which, by the descent form, must be isomorphic to Kn as K-vector spaces. Therefore, if we
pick a k-basis {v1, . . . , vn} of W , it must also be a K-basis of Kn. Now note that for 1 ≤ i ≤ m,

vi = g ∗ vi = agg(vi),

so if we let b′ be the matrix with vi as column vectors, and b be its inverse, then

b′ = agg(b
′) =⇒ ag = b−1g(b), ∀g ∈ G

as desired.4

Finally, here is the proof of the descent form.

Proof of the descent form. We defined the functor G : D → C by mapping eachM to the submodule
of M fixed under G-action, say MG. We first show that G ◦F is isomorphic to the identity functor.
Note that for any k-vector space V , we have a natural map V → (V ⊗k K)G mapping v 7→ v ⊗ 1.

Claim 1. This map is an isomorphism of k-vector spaces.

Proof of Claim 1. Consider a k-basis {vi}i∈I of V . Then {vi ⊗ 1}i∈I is a K-basis of V ⊗k K. Now
if

v = v1 ⊗ k1 + v2 ⊗ k2 + · · ·+ vn ⊗ kn,

is in (V ⊗k K)G, then

v = gv = v1 ⊗ g(k1) + v2 ⊗ g(k2) + · · ·+ vn ⊗ g(kn),

which shows that g(ki) = ki for all g ∈ G. Since K is a Galois G-algebra, this implies that ki ∈ k,
so v ∈ V ⊗k k. This gives

(V ⊗k K)G = V ⊗k k ∼= V.

For the other direction, note that for any K-module M with descent datum, we have a natural
map from MG ⊗k K →M defined by m⊗ a 7→ am which respects the descent datum.

4I finally understood this proof with the help of this comment here.
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Claim 2. If K is split, then MG ⊗k K →M is an isomorphism of K-modules.

Proof of Claim 2. Note that any split Galois G-algebra K is of the form kG, which can be viewed as
functions from G to k. If a ∈ kG is a function, then the function ga is given by (ga)(x) = a(g−1x).
Let M be a K-module. Then if we define ex ∈ K = kG to be ex(y) = δ(xy) for all y ∈ G, then

M ∼=
⊕
x∈G

Mx :=
⊕
x∈G

exM,

as K-modules. Now suppose that M has a descent datum. Then g(exm) = g(ex)g(m) = egxg(m),
so the action of g sends Mx to Mgx. Hence if we write N =Me ⊆M , then the above direct sum is
the same as

M ∼=
⊕
x∈G

x(N).

Let m ∈MG. We can write it uniquely as m =
∑

x∈G x(nx) for nx ∈ N . Then for all g ∈ G,∑
x∈G

x(nx) = m = g(m) =
∑
x∈G

gx(nx) =
∑
x∈G

x(ng−1x),

which implies that nx is a constant in N independent of x. Hence

MG =

{∑
x∈G

xn : n ∈ N

}
∼= N.

Then the homomorphism maps∑
x∈G

xn⊗ ey 7→ ey ·
∑
x∈G

xn =
∑

ey(xn) = yn.

So this maps each factor MG ⊗ eyK of the left direct sum to the factor y(N) of the right one and
so it’s an isomorphism.

Claim 3. Let k1/k be a field extension. Put K1 = K ⊗k k1, which is a Galois G-algebra over k1.
Let M be a K-module with descent datum. If we define M1 =M ⊗k k1 =M ⊗K K1, then the map
β :MG ⊗k K →M is an isomorphism iff β1 :M

G
1 ⊗k1 K1 →M1 is an isomorphism.

Proof of Claim 3. We claim that β1 is just β ⊗ idk1 . Note that MG is the kernel of the map
α : M → ⊕x∈GM which maps m 7→ (xm −m)x∈G. Similarly, MG

1 is the kernel of the analogous
map α1. Now M is obtained from M1 by base change, so it follows that MG

1 is also obtained from
MG via base change, i.e., MG ⊗k k1. Therefore,

MG
1 ⊗k1 K1 =MG

1 ⊗k1 k1 ⊗k K =MG
1 ⊗k K =MG ⊗k k1 ⊗k K = (MG ⊗k K)⊗k k1,

and under this isomorphism, the map β1 is just β ⊗ idk1 . Therefore, β is an isomorphism iff β1 is
an isomorphism.

Finally, since for any etale algebra we can base change to get a split algebra, we are done.
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§ Lecture 15

We will talk about some applications of the descent theorem described before.

Theorem 15.1. Let L/k be a finite Galois extension of fields. Let G = Gal(K/k). Assume that
X ⊆ Ln be such that

(a) X is algebraic; there exist polynomials f1, . . . , fn ∈ L[x1, . . . , xn] such that X is the zero locus
of this set of polynomials.

(b) Also, σ(X) = X for all σ ∈ G. Here the action is pointwise.

Then there exist polynomials g1, . . . , gn with coefficients in k such that X is the zero locus of these
polynomials.

Example 15.0.1. Take L/k = C/R. Take X = {(i, i), (−i,−i)}. Then the defining polynomials of
X are the four polynomials (x+ i)(y+ i), (x+ i)(y− i), (x− i)(y+ i), and (x− i)(y− i). However,
we see that this set is also defined by x− y and x2 + 1 which have coefficients in R instead.

Proof. Let I be the ideal of L[x1, . . . , xn] consisting of all the polynomials that vanish on X. We
can define the G-action on L[x1, . . . , xn] by applying σ ∈ G to the coefficients. This maps I to
itself since if a polynomial f vanishes on the set X, then σ(f) vanishes on σ(X) = X.

Note that L[x1, . . . , xn] = k[x1, . . . , xn] ⊗k L, and this has canonical descent datum given as
above. Moreover, we can restrict this to get a descent datum on the ideal I, as σ(I) = I for all
σ ∈ G. Then by the descent theorem, I = I0 ⊗k L, where I0 is an ideal of k[x1, . . . , xn]. This
ring is Notherian, so the ideal I0 has finitely many generators. These generators are precisely the
polynomials g1, . . . , gn that we want.

Theorem 15.2 (Skolem-Noether). Let L/k be a finite Galois extension. Let A be a finite dimen-
sional k-algebra such that A ⊗k L ∼= Mn(L). Then every k-algebra automorphism of A is inner;
i.e., there exists g ∈ A× such that α(a) = gag−1.

Proof. Suppose that we have proven the case when A = Mn(k) is a matrix algebra. Let α be an
automorphism of A. Then α ⊗ id := αL is an automorphism of the L-algebra A ⊗k L ∼= Mn(L).
Therefore, there exists an invertible element g ∈ (A⊗k L)

× := A×
L such that αL(a) = gag−1. Note

that σ(αL) = αL for all σ ∈ G = Gal(L/k) (here σ is acting on AL as id⊗σ.) Therefore, for all
elements a ∈ AL,

σ(αL)(a) = σ(αL(σ
−1(a))) = σ(gσ−1(a)g−1) = σ(g)aσ(g)−1 = gag−1.

Therefore, g−1σ(g) lies in the center of AL. However, Z(AL) = L×, so g−1σ(g) = cσ for some
cσ ∈ L×. Now note that (cσ)σ∈G is a cocycle, since

cσσ(cτ ) = g−1σ(g)σ(g−1τ(g)) = g−1στ(g) = cστ .

Therefore, by Hilbert’s Theorem 90, there exists b ∈ L× such that cσ = b−1σ(b). However, by
definition, cσ = g−1σ(g), so gb−1 = σ(gb−1). Therefore, gb−1 ∈ (A⊗k L)

×G = A×. Hence,

σ(a) = gag−1 = gb−1abg−1 = g1ag
−1
1 ,

where g1 ∈ A× as desired.
It remains to prove this for the case when A is a matrix algebra itself. We will continue this

after proving some necessary tools.
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Theorem 15.3 (Morita equivalence). Let R be a ring. There is an equivalence between the category
of left R-modules and the category of left Mn(R)-modules. The functors are given by V 7→ V n, and
M 7→ e11M .

Proof. Note that e11V
n = V ⊕ 0⊕ · · · ⊕ 0, and this is naturally isomorphic to V . Now let M be a

Mn(R)-module. Note that if M is an Mn(R)-module, then M =
⊕n

i=1 eiiM . However, eii(M) ∼=
ejj(M) simply by multiplication with eji, so this gives me a natural R-module isomorphism fM :⊕n

i=1 e11M →
⊕n

i=1 eiiM . It can be checked that this is in fact an isomorphism ofMn(R)-modules.
This completes the proof.

Remark. Here is a more symmetric description of the two equivalence functors. Let Cn = Rn as
column vectors. This is both a left Mn(R)-module and an right R-module. If we instead consider
Rn = Rn as row vectors, then this is a (R,Mn(R))-bimodule instead. If V is a left R-module,
then we can form the tensor product Cn ⊗R V which is a left Mn(R)-module. Now if M is a left
Mn(R)-module, then we can form the tensor product Rn ⊗Mn(R) M , which is a left R-module. It
turns out that these are precisely the two equivalence functors that appeared above. The Morita
equivalence is just the fact that

Rn ⊗Mn(R) Cn
∼= R

as (R,R)-bimodules, and
Cn ⊗R Rn

∼=Mn(R)

as (Mn(R),Mn(R))-bimodules.

Fact 15.1. Let k be a field. Then any k-linear equivalence (this means that the equivalence produces
linear maps between hom-sets) from the category of k-modules to itself is naturally isomorphic to
the identity functor.

Once we know this, we can finish the proof of Skolem-Noether theorem.

Proof of Skolem-Noether continued. Let α be an automorphism of Mn(k). For any Mn(k)-module
M , let α∗(M) be the Mn(k)-module such that the underlying k-module is M and the new scalar
multiplication is defined by a ·m = α(a)m. Then the functor α∗ is a k-linear self-equivalence of
category of Mn(k)-modules. By the Morita equivalence and the fact above, it follows that α∗ must
be naturally isomorphic to the identity functor of the category of Mn(k)-modules; let this natural
isomorphism be ϕ. Note that this ϕ can be regarded as an automorphism of the forgetful functor
from the category of Mn(k)-modules to the category of k-modules since both M and α∗M have the
same k-module structure (the ‘twisting’ effect of α only occurs for elements outside of k.) However,
this automorphism group is the same as Mn(k)

×. Therefore, there exists b ∈ Mn(k)
× such that

ϕM (m) = bm for all m and all M . Now note that

bam = ϕM (a ·m) = a · ϕ(m) = α(a)bm

for all a and for all m. Therefore, this implies that α(a) = bab−1 as desired.
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§ Lecture 16

From now on, we will focus on central simple algebras.

Definition 16.1. Let k be a field. A k-algebra A is called central if Z(A) = k.

Remark. Note that these two conditions are stable under base change. i.e., Given a field extension
k′/k, A is central iff A⊗k k

′ is central and similarly for finiteness.

Theorem 16.1. Let A be a finite dimensional central k-algebra. Then TFAE:

(1) The only two-sided ideals of A are {0} and A.

(2) A⊗k A
op ∼=Mn(k) where n = dimk A.

(3) A ∼=Mn(D) where D is a central division k-algebra.

(4) The category of A-modules is semisimple5 with only one isomorphism class of simple modules.

(5) There exists a field extension k′/k such that A⊗k k
′ ∼=Mn(k

′).

(6) There exists a finite separable extension k′/k such that A⊗k k
′ ∼=Mn(k

′).

If A satisfies any of the above properties, then we say that A is a central simple k-algebra. If
A ∼=Mn(k), then we say that A is split.

Corollary 16.1.1. If A and A′ are central simple algebras, then A ⊗k A
′ is also a central simple

algebra.

We will prove this theorem later; we will state other interesting theorems about CSAs first.

Theorem 16.2. Let A and A′ be CSAs over k. Then TFAE:

(1) A⊗ (A′)op is split.

(2) There exists a CDA D such that A ∼=Mn(D) and A′ ∼=Mn′(D).

(3) There exists m,m′ > 0 such that Mm′(A) ∼=Mm(A′).

(4) A-Mod is equivalent to A′-Mod as k-linear categories.

Write A ∼ A′ if these are satisfied. Then ∼ is an equivalence relation on the category of k-CSAs
up to isomorphism.

Theorem 16.3. Let A and A′ be defined as follows. Then the equivalence class of A⊗k A
′ depends

only on the equivalence classes of A and A′.

This means that we can define a binary operation on the set of equivalence classes of central
simple algebras.

Definition 16.2. This set along with the binary operation forms a commutative group! This group
is called the Brauer group of field k, denoted by Br(k).

We will discuss about simple and semisimple modules before we prove all of these.

5This means that every A-module is semisimple.
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Definition 16.3. Let R be any ring. A R-module S is called simple if the only R-submodules of S
are {0} and S, and S is not the zero module.

Lemma 16.4. Every such S is isomorphic to R/M where M is a maximal left ideal of R.

Proof. Let x be a non-zero element of S. Then the R-submodule generated by x must be the whole
of S. Therefore, if we define the map ϕ : R → S defined by a 7→ ax, then ϕ is surjective, and so
S ∼= R/ ker(ϕ), and it must be maximal since any ideal that lies between R and ker(ϕ) corresponds
to a R-submodule of S.

Lemma 16.5 (Schur). Let S and S′ be simple R-modules, and suppose that f : S → S′ is an
R-module homomorphism. Then either f is the zero map or it is an isomorphism.

Proof. This is actually trivial.

As a corollary, we get

Corollary 16.5.1. If S is a simple R-module, then EndR(S) is a division ring.

Remark. Let R be a k-algebra where k is an algebraically closed field, and let S be a simple module
whose dimension over k is finite. Then EndR(S) = k. To see this note that for each a ∈ k we can
define s 7→ as which is an element of EndR(S), so k ⊂ EndR(S). Conversely, let f ∈ EndR(S).
Then we can find an eigenvalue λ of f as a k-linear map. Then f − λ id is an element of the
endomorphism ring EndR(S), but this is not invertible as a k-linear map so certainly not as a ring
map, so by Schur’s lemma it must be the zero map, i.e., f = λ id for some λ ∈ k.

Theorem 16.6. Let R be a ring and M be an R-module. Then TFAE:

(1) M is a sum of simple submodules.

(2) M is a direct sum of simple submodules.

(3) Every submodule of M is a direct summand of M .

Definition 16.4. We say that M is semisimple if the conditions above are satisfied.

Proof. It is obvious that (2) ⇒ (1). We now show that (1) ⇒ (3), so suppose that M =
∑

i∈I Si
where each Si is simple. Let M ′ be a submodule of M , our goal is to find a submodule M ′′ such
that M = M ′ ⊕M ′′. Consider C = {J ⊂ I :

∑
j∈J Sj is direct and

∑
j∈J Sj +M ′ is direct}. The

condition that
∑

j∈J Sj is direct just means that the map
⊕

j∈J Sj → M defined by summation
is injective. Then C is a poset satisfying the conditions of Zorn’s lemma, and so there exists a
maximal element J0 ⊂ I.

Claim 1. Let M ′′ =
⊕

j∈J0 Sj . Then M
′′ ⊕M ′ =M .

Proof. Assume that there exists some i0 ∈ I such that Si0 is not contained in LHS. Clearly i0 ̸∈ J .
Then the intersection of LHS and Si0 must be the zero module, soM ′′+Si0 =M ′′⊕Si0 . Therefore,
J0 ∪ {i0} is strictly bigger than J which is a contradiction. Therefore, each Si is contained in the
LHS, which means that M must also be contained in it. This finishes the proof.

We now prove that (3) ⇒ (1). Suppose that every submodule of M is a direct summand of M .
Then every submodule of M have the same property too. To see this let M ′ be a submodule of M
and M ′′ be a submodule of M ′. Then there exists a submodule P of M such that M = M ′′ ⊕ P .
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We now claim that M ′ =M ′′⊕ (M ′∩P ). This is actually quite obvious: for m′ ∈M ′, we can write
it uniquely as m′ = m′′ + p, and this implies that p ∈M ′ ∩ P since m′′ ∈M ′.

Now we construct a sum of simple submodules which is equal to M . Let M0 =
∑

S⊂M S, where
S is a simple submodule of M . If M0 is not the whole M , then M = M0 ⊕ L for some non-zero
submodule L. Then take some non-zero x ∈ L. Then Rx is isomorphic to R/I for some ideal I
and so it follows that Rx has a simple quotient. Then the above observation implies that Rx has a
simple R-submodule (more specifically, the kernel of the quotient map is a direct summand of Rx,
we can just take the other summand of this direct sum) and which is a contradiction.

Now we just need to prove (1) ⇒ (2). But we can just take the zero submodule at the start in
the proof of (1) ⇒ (3) and this would imply that M ′′, which is a direct sum of simple modules, is
equal to M itself.

We can now prove the characterization theorem for central simple algebras. We first verify it
for some special cases.

Lemma 16.7. Property (4) is satisfied if A =Mn(D) where D is a division algebra.

Proof. This follows from the Morita equivalence. Note that this property remains unchanged under
an equivalence of categories, and so we just need to show it for the category of D-modules. But in
this case we can employ the theory of vector spaces over division rings.

Lemma 16.8 (Rieffel). Let R be a ring that has only {0} and R as two-sided ideals. Let L be a
non-zero left ideal. We can view L as a left EndR(L)-module, and there is a natural map λ : R →
EndEndR(L)(L) given by left multiplication with elements of R. This map is an isomorphism.

Proof. λ is certainly injective since kerλ is a two-sided ideal, and it is not equal to R since 1 7→ id,
so the kernel must be trivial. Therefore, we just need to show that λ is surjective. Note that for
any left-ideal L, LR is a two-sided ideal of R, and it is non-zero so it must be the whole ring.
Therefore, we can write 1 =

∑n
i=1 xiyi where xi ∈ L and yi ∈ R. Applying λ to both sides gives

id =

n∑
i=1

λ(xi)λ(yi),

so it follows that id ∈ Im(LR).
We now claim that Im(L) is a left ideal of EndEndR(L)(L). Let f ∈ EndEndR(L)(L), and consider

f ◦λ(x) where x ∈ L. Then since multiplication by y on the right is an endomorphism in EndR(L),
we see that

(f ◦ λ(x))(y) = f(xy) = f(x)y = λ(f(x))(y),

so f ◦ λ(x) ∈ λ(L).
Therefore, Im(LR) is also a left-ideal, and since it contains id, it must be the whole ring.

Therefore, λ is surjective, and this completes the proof.
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§ Lecture 17

We are going to apply Rieffel’s lemma in the case when A =Mn(D) for some central division ring
D. By Morita Equivalence, any A-module M is of the form Sm, where S is the unique simple
A-module which we can take to be the space of column vectors Dn. Then EndA(M) =Mm(Dop).

We now start proving Theorem 16.1.

Proof. Let’s show that (1) ⇒ (3). Let L be a minimal non-zero left ideal of A. Then L is a simple
A-module, and so by Schur’s lemma, EndA(L) is a division ring. Therefore, applying Rieffel’s
lemma shows that

A ∼= EndEndA(L)(L) = EndD(L),

Then L = Dn for some integer n since it is a D-vector space, so EndD(L) ∼=Mn(D
op).

To see (3) ⇒ (1), we apply the Morita equivalence. Let A = Mn(D) for some central division
algebra D. Then a left ideal of A is of the form HomD(D

n,W ) where W is a D-submodule of Dn.
Now note that such a left-ideal is a two-sided ideal only when W is zero or the whole ring. This
shows that A is simple. Moreover, the center of Mn(D) is the same as the center of D, which is
just k.

(3) ⇒ (4) was proven in a remark above.
Now we show that (3) ⇒ (5). Let A be a k-CSA, and let k′ be an algebraic closure of k.

Then by the lemma below, A′ = A ⊗k k
′ is a central simple k′-algebra, so it must be of the form

Mn(D), where D is a central division k′-algebra. Schur’s lemma then tells us that D = k′, so
A⊗k k

′ =Mn(k
′) (see the remark after Corollary 16.5.1.)

Also, (5) ⇒ (3) follows readily from Lemma 17.1 since Mn(k
′) is a central simple k′-algebra for

any field extension k′ of k.
(1) ⇒ (2) is proved more specifically as Fact 17.1 below.
Let’s now prove (2) ⇒ (1). If A is not simple, then there is a non-zero proper two-sided ideal

I of A. If A and B are k-algebras and I and J are two-sided ideals of A and B respectively, then
I⊗k J is also a two-sided ideal of A⊗kB. In our case when B = Aop, I⊗kA

op is a non-zero proper
two-sided ideal of A⊗k A

op, which is a contradiction as the latter ring is simple.
To prove (4) ⇒ (3), recall that for any ring A, EndA(A) = Aop if we view A as a left A-module.

Let S be an object from the unique isomorphism class of simple A-modules. Then A as a left
A-module is isomorphic to Sn for some n. Since EndA(S

n) = Mn(EndA(S)) and EndA(S) is a
division ring by Schur’s lemma, it follows that Aop is a matrix ring over a division ring. Therefore,
A itself must also be a matrix ring over a division ring.

Finally, (5) ⇒ (6) is proved below as a separate theorem.

Lemma 17.1. Let A be a finite-dimensional k-algebra, and let k′/k be a field extension. Then A is
a k-CSA iff A⊗k k

′ is a k′-CSA. In other words, the property of being a CSA is stable under base
change.

Proof. Note that A is a central k-algebra iff A⊗k k
′ is a central k′-algebra, so we just need to check

that base change preserves simplicity.
First, assume that A⊗k k

′ is a k′-CSA. Let I be a non-zero ideal of A. Then I⊗k k
′ is contained

in A⊗k k
′ and it is also a non-zero ideal of A⊗k k

′, so it must be the whole ring. This implies that
I = A since dimk I = dimk A.

Now suppose that A is a k-CSA, and let I be a non-zero ideal of A⊗k k
′. Let m be the smallest

possible integer such that there exists some non-zero α ∈ I such that α =
∑n

i=1 ai ⊗ bi, for some
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ai ∈ A and bi ∈ k′. Then by the minimality of n, a1, . . . , an are linearly independent in A over k
and b1, . . . , bn are linearly independent in k′ over k.

Now consider the set Aa1A, which is a two-sided non-zero ideal of A. Then as A is simple, this
ideal must be the whole ring, so there exist xi, yi ∈ A such that

m∑
j=1

xja1yj = 1.

Now consider
m∑
j=1

(xj ⊗ 1)α(yj ⊗ 1) =

n∑
i=1

m∑
j=1

xjaiyj ⊗ bi =

n∑
i=1

a′i ⊗ bi = α′.

which is still an element of I with minimal length, but now a1 = 1. Therefore, we can just assume
from the start that a1 = 1. Now suppose that n > 1. Then a2 and a1 are linearly independent over
k, so it follows that a2 ̸∈ k = Z(A). This means that there exists some b ∈ A such that a2d ̸= da2.
However, if we consider the element (d⊗ 1)α− α(d⊗ 1), then this can be written as

n∑
i=1

(dai − aid)⊗ bi.

From this, it is clear that this element has length smaller than n and is non-zero since the coordinate
of b1 is zero but the coordinate of b2 is non-zero. This contradicts the minimality of n, so it follows
that n = 1. Therefore, I contains an element of the form 1 ⊗ b1 where b1 ̸= 0. It is evident that
any two-sided ideal containing such an element must be the whole ring.

Fact 17.1. Let A be a finite dimensional k-algebra. Let A◦ be the underlying k-vector space of A.
Let ϕ be the map defined by

ϕ : A×Aop → Endk(A◦)

(α, β) 7→ (x 7→ αxβ)

This map is k-bilinear, so this gives a k-linear map Φ from A ⊗k A
op → Endk(A◦) which is a

k-algebra homomorphism. If A is a k-CSA, then Φ is an isomorphism.

Proof. Let A be a k-CSA, and let k′ be such that A′ = A⊗k k
′ = Mn(k

′). Then to show that ΦA

is an isomorphism is the same as showing that ΦA ⊗ id : (A⊗k A
op)⊗k k

′ → Endk(A◦)⊗k k
′ is an

isomorphism. But this map is the same as ΦA′ . Therefore, we just need to prove this fact in the
case when A is a matrix algebra.

So, suppose that A =Mn(k). Then A
op ∼=Mn(k) by tranposing, so it follows that A⊗k A

op =
Mn(k) ⊗k Mn(k) ∼= Mn2(k). Meanwhile, Endk(A◦) = Mn2(k). The map Φ is a k-algebra map
whose kernel is non-zero, and since Mn2(k) is simple, it follows that Φ is one-to-one. Since the
domain and codomain have the same dimension as k-vector spaces, it then follows that Φ is indeed
an isomorphism.

Before we prove the final part, we need the following lemma.

Lemma 17.2. Let A be a k-CSA with dimension n2. Assume k′ ⊂ A is a k-subalgebra such that
k′/k is a field extension of degree n. Then A⊗k k

′ ∼=Mn(k
′).
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Proof. Note that k′ is also a k-subalgebra of Aop. Therefore, A⊗kk
′ is a k-subalgebra of A⊗kA

op ∼=
Endk(A◦). By right multiplication by elements of k′, we can view A as a k′-vector space, say A′, and
it is immediate that Endk′(A

′) ⊂ Endk(A◦), and A⊗k k
′ ⊂ Endk′(A

′). In fact this latter inclusion
is an equality for dimension reasons (both have dimension n2 over k′). The latter is obviously a
matrix algebra over k′, and dimk′ A = n, so this is just Mn(k

′).

44



§ Lecture 18

Here is a brief review about discriminants. Recall that the discriminant is a unique polynomial
in n variables with integer coefficients, such that for any degree n polynomial f = xn − c1x

n−1 +
c2x

n−2 + · · · ± cn whose roots are αi, then

Disc(c1, . . . , cn) =
∏
i>j

(αi − αj)
2.

Theorem 18.1 (Noether, Koethe). Let A be a k-CSA of dimension n2. Then there exists a finite
separable extension k′/k such that A⊗k k

′ ∼=Mn(k
′).

Proof. It is enough to handle the case when A is a division algebra. Also we can assume that k
is infinite since the theorem is obvious for finite fields which are perfect. By the lemma above,
it suffices to find a separable extension of degree n contained inside D. Choose K/k such that
A⊗kK ∼=Mn(K) and denote the isomorphism by ϕ. For α ∈ A, we want to look at the discriminant
of the charactersitic polynomial of ϕ(α ⊗ 1). If we fix a basis v1, . . . , vN of A over k, then we can
write x =

∑N
i=1 ai(vi ⊗ 1) for all x ∈ A ⊗k K with coefficients in K. Then the discriminant is a

polynomial of these coefficients, say f(a1, . . . , an) in K[x1, . . . , xn]. If this polynomial is the zero
polynomial, then ϕ(x) has discriminant 0 for all x ∈ A ⊗k K. But ϕ(A ⊗k K) = Mn(K) and
there are certainly matrices with separable characteristic polynomial. Therefore, f is not the zero
polynomial, and since the field k is infinite, it follows that f does not vanish on kn, and therefore,
there exists α ∈ A such that ϕ(α⊗ 1) has a separable characteristic polynomial.

Now fix such an α ∈ A. We claim that the subring of A generated by α over k is a separable
field extension of k of degree n. This ring is automatically a field because it is a commutative
integral domain which is finite-dimensional over k, and so it is isomorphic to k[x]/(f) where f is
the irreducible polynomial of α over k. Denote this field by F .

Note that A can be regarded as an F -vector space. If we consider the k-linear transformation
ρℓ(α) : A → A by left multiplication with α, then we see that the minimal polynomial of this
transformation is the same as f . However, we can find this minimal polynomial in another way;
since ϕ is an isomorphism, this is the same as the minimal polynomial of ρℓ(ϕ(α ⊗ 1)) in Mn(K),
which is just the minimal polynomial of the matrix ϕ(α⊗1) (this is not completely trivial!) However,
by our assumption, the latter is a separable monic polynomial of degree n, so we’re done.

Definition 18.1. Let X, X ′ be certain ‘structures’ defined over a field k. We say that X, X ′ are
twists of each other if there exists a field extension such that X ⊗k k

′ ∼= X ′ ⊗k k.

Example 18.1.1. Etale algebras are twists of split etale algebras. Any non-degenerate quadratic
form over R is a twist of x21 + · · · + x2n. U(n) is a twist of GL(n,R). Every CSA over k is a twist
of Mn(k).

Remark. If we know that the twisting can be achieved using k′ separable/Galois over k, we can
study them using Galois theory.

Since we have some time left, Professor Yu decided to prove this classic theorem for entertain-
ment purposes.

Theorem 18.2. Let k be a field, and let e1, . . . , en be elementary symmetric polynomials. Then any
symmetric polynomial can be written as a polynomial of elementary symmetric polynomials.
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Proof. The fact that the right side is included in the left side is obvious. Now if we consider the
extension k(x1, . . . , xn)/k(e1, . . . , en), this is a separable extension of degree at most n!, since it
is the splitting field of

∏n
i=1(X − xi). However, there are at least n! automorphisms fixing k,

so it follows that this is a Galois extension, and that the fixed field is exactly the base field. In
other words, any rational symmetric function is a rational polynomial of elementary symmetric
polynomials.

In order to show our conclusion, we just need to show that k[x1, . . . , xn] ∩ k(e1, . . . , en) =
k[e1, . . . , en]. I cannot quite recall how Professor Yu did it, but here is a proof that uses integral
extensions. Note that the ring extension k[e1, . . . , en] ⊂ k[x1, . . . , xn] is an integral extension, since
each xi is a root of the monic polynomial

∏n
i=1(X − xi) ∈ k[e1, . . . , en][X]. If f belongs to the left

hand side, then f is integral over k[e1, . . . , en] and f ∈ k(e1, . . . , en). However, k[e1, . . . , en] is inte-
grally closed (since e1, . . . , en are algebraically independent and so it is isomorphic to k[x1, . . . , xn]
which is a UFD), and so it follows that f ∈ k[e1, . . . , en].
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§ Lecture 19

Recall the following theorem that we stated during a previous lecture.

Theorem 19.1. Let A, A′ be k-CSAs. Then TFAE:

(1) A ∼=Mn(D) and A′ ∼=Mn′(D).

(2) There exist n, n′ such that Mn(A) ∼=Mn′(A′).

(3) A⊗ (A′)op is a matrix algebra.

(4) The categories AMod and A′Mod are equivalent as k-linear categories.

We say that A and A′ are Brauer-equivalent if these conditions are satisfied.

Proof. Let’s show that (1) ⇒ (3). Suppose A =Mn(D) and A′ =Mn′(D) for some integers n and
n′. Then

A⊗k (A
′)op =Mn(D)⊗Mn′(D)op =Mn(k)⊗D ⊗Mn(k)⊗Dop =Mnn′(k)⊗Md2(k) =Md2nn′(k)

where we used the fact that D ⊗Dop =Md2(k) where d is the dimension of D over k.
To show (3) ⇒ (1), we note that

MN ′(Dop) = DopA⊗A⊗A′op =Mn(k)⊗A”op =MNn′(D′op)

so by the lemma below we see that D ∼= D′.
(1) ⇒ (2) is trivial, and (4) ⇒ (1) and (2) ⇒ (4) follow from the Morita equivalence.

Lemma 19.2. Let A be a CSA over k. Suppose A ∼= Mn(D) and A ∼= Mn′(D′). Then n = n′ and
D ∼= D′ as k-algebras.

Therefore, there is a bijection between the k-CSAs up to Brauer equivalence and k-CDAs up to
isomorphism. This will allow us to define a group structure on the latter set, which is not closed
under tensor product.

Theorem 19.3. The set of k-CSAs up to Brauer equivalence has an abelian group structure given
by [A] · [A′] = [A⊗k A

′].

Proof. First, let’s show that this is well-defined. Suppose that A ∼ A′ and B ∼ B′. To see if
A⊗k B ∼ A′ ⊗k B

′, we just compute the tensor product

(A⊗k B)⊗k (A
′ ⊗k B

′)op = (A⊗k B)⊗k (A
′op ⊗k B

′op)

= (A⊗k A
′op)⊗k (B ⊗k B

′op) =Mn(k)⊗Mn′(k) =Mnn′(k),

and since this is a matrix algebra, they are indeed Brauer equivalent.
The binary operation defined is both commutative and associative since the tensor product

satisfies these properties. The identity element is just the class of [k], since A ⊗k k = A for all
k-algebras A. The inverse is given by Aop since

[A] · [Aop] = [A⊗k A
op] = [Mn(k)] = [k].

Definition 19.1. This group is called the Brauer group of the field k, denoted by Br(k).
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Now let K/k be a field extension. As noted before, any central simple k-algebra A remains
a CSA after base change to K. After some checking we can see that the map [A] ∈ Br(k) 7→
[A⊗k K] ∈ Br(K) is well-defined and is a group homomorphism.

Definition 19.2. The kernel of this map is called the relative Brauer group of the field extension
K/k.

In other words, the relative Brauer group consists of the equivalence classes of k-CSAs that
become a matrix algebra over K after base change.

Remark. k-CSAs are just k-algebras which are “locally (in the etale topology) is a matrix algebra”.

To proceed further, we introduce some terminology from group cohomology.

Definition 19.3. A G-module is an abelian group A equipped with an action of G. In other words,
it is just the data of a group homomorphism from G to Aut(A).

Given a G-module A, we can consider the following chain complex, whose i-th element is
Ci(G,A) consisting of all functions from Gi to A. We call the elements of Ci(G,A) to be i-cochains.
Then there are coboundary maps δn : Cn(G,A) → Cn+1(G,A) between the objects defined by

δn(f)(g0, . . . , gn) := g0f(g1, . . . , gn)− f(g0g1, g2, . . . , gn) + f(g0, g1g2, . . . , gn)+

· · ·+ (−1)nf(g0, . . . , gn−2, gn−1gn) + (−1)n+1f(g0, . . . , gn−1).

and we attach the map 0 → C0(G,A) to the chain complex. The key thing is that δi ◦ δi−1 = 0, so
im δi−1 ⊂ ker δi for all i ≥ 0.

Definition 19.4. The i-th cohomology group is defined to be ker δi/ im δi−1, and is denoted by
H i(G,A).

Remark. The 0-th cohomology group is just AG, the set of elements of A fixed by G. This is not
a coincidence! The morally correct definition of cohomology groups is to define them as the right
derived functors of the left exact functor A 7→ AG from G-Mod to Ab. In particular, there is a long
exact sequence connecting all the cohomology groups.

Remark. If A is not abelian, we can still define the first cohomology group H1(G,A). We just
define it to be the kernel of δ1 modulo the relation that f ∼ g iff there exists an element α ∈ A
such that αf(s)s(α)−1 = g(s) for all s ∈ G. However, we only define up to the first cohomology
group for nonabelian G-modules (which we will call G-groups instead.)

Here is the reason why we introduced these cohomology groups.

Theorem 19.4. Let K/k be a finite Galois extension, and let G = Gal(K/k). Then there is a
natural isomorphism between

Br(K/k) ∼= H2(G,K×).

Proof. Let’s first construct the map from Br(K/k) → H2(G,K×). Let A be a k-CSA such that
Mn(K) ∼= A ⊗k K. Let this isomorphism be ϕ. For an element s ∈ G, define as = ϕ−1s(ϕ) :
Mn(K) →Mn(K)6. This is a k-algebra automorphism ofMn(K), and by Noether-Skolem theorem,
we can identity the group AutK(Mn(K)) with the group GLn(K)/K×.

6We have a natural map from G to Aut(A⊗k K) defined by s 7→ id⊗s for all s ∈ G. We then have an action of s
on Homk(Mn(K), A⊗k K) defined by (sϕ)(x) = s(ϕ(s−1(x))).
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We can check that as is a cocycle in C1(G,GLn(K)/K×). Now using the exact sequence
0 → K× → GLn(K) → GLn(K)/K× → 0, we can lift the 1-cocycle to a 2-cocycle in C2(G,K×)
by using the snake lemma. Explicity, this is given by

cs,t = s(ãt)(ãst)
−1(ãs)

where ãs denotes the lift of as in GLn(K). We then define the map β : Br(K/k) → H2(G/K×) as

β([A]) = (cs,t) mod B2,

where B2 = im δ1.
The fact that this map is well-defined is shown in two steps in the lemma below. Unfortunately,

we do not have time to check that this is a group isomorphism. Basically, the injectivity is by
Hilbert’s Theorem 90, and the surjectivity is by constructing the crossed product algebra.

Lemma 19.5 (First stage). Let X be an object over k. Then consider the set of K/k-twists of X up
to k-isomorphism. There is a natural map from this set to H1(G,AutK(X ⊗k K).

Proof. Given X ′/k, there is an isomorphism ϕ : X ⊗k K → X ′ ⊗k K. Then for any s ∈ G, we can
define as = ϕ−1s(ϕ) ∈ Autk(X ⊗k K). We claim that this is a 1-cocycle from G to Autk(X ⊗k K).
This is just a computational check:

ass(at) = ϕ−1s(ϕ)s
(
ϕ−1t(ϕ)

)
= ϕ−1s(ϕ)s(ϕ−1)st(ϕ) = ast.

Moreover, the class of (as)s∈G in H1(G,Autk(X⊗kK)) is independent of the choice of isomorphism
ϕ. To see this, suppose that ψ is another isomorphism, and define bs = ψ−1s(ψ). If we define
α = ϕ−1ψ, then we can check that for all s ∈ G, αbss(α)

−1 = as. But this means that they
represent the same class in H1(G,Autk(X ⊗k K)).

The important philosophy is that this natural map is often a bijection.

Lemma 19.6 (Second stage). Assume that 1 → C → B → A→ 1 is an exact sequence of G-groups,
and that C lies in the center of B. Then there is a natural map H1(G,A) → H2(G,C).

Proof. Given [a] ∈ H1(G,A) let as be the 1-cocycle corresponding to it in C1(G,A). The map
B → A is surjective, so we can lift it to a 1-cocycle ãs in C1(G,B). Now apply the coboundary
map to this to get a 2-cochain

cs,t = s(ãt)(ãst)
−1ãs.

This takes values in the kernel of B → A, so by exactness we get a 2-cochain from G to C. To
check that this is a 2-cocycle, we check that for all s, t, u ∈ G,

sct,uc
−1
st,ucs,tuc

−1
s,t = 1

where we have to use the crucial fact that C lies in the center of B. We define the image of [a] to
be the image [c] in H2(G,C). It can be checked that this does not depend on the lift of a.

[End of the course! ]
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